Sustainable machining of AISI4140 steel: a Taguchi-ANN perspective on eco-friendly metal cutting parameters

Author:

Jadhav Pankaj KrishnathORCID,Sahai R. S. N.

Abstract

AbstractThis work explores environmentally conscious machining practices for AISI4140 steel through Taguchi analysis. The study employs a design of experiments (DOE) approach, focusing on cutting speed, depth of cut, and coolant type as parameters. Taguchi’s L9 orthogonal array facilitates systematic experimentation, and the results are analyzed using MINITAB 17 software. Signal-to-noise ratios (SNR) are utilized to establish optimum operating conditions, evaluate individual parameter influences, and create linear regression models. The experiments reveal neem oil with graphene coolant as an eco-friendly solution, addressing health and environmental concerns. Main effects plots visually represent the impact of parameters on machining quality. Additionally, regression and artificial neural network (ANN) models are compared for surface roughness prediction, with ANN showing superior performance. The findings advocate for optimized cutting conditions, emphasizing material conservation, enhanced productivity, and eco-friendly practices in AISI4140 steel machining. This research contributes valuable insights for industries seeking sustainable machining solutions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3