Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites - a review

Author:

Das Dipti Kanta,Mishra Purna Chandra,Singh Saranjit,Pattanaik Swati

Abstract

Abstract Ceramic-reinforced aluminium matrix composites have attracted considerable attention in engineering applications as a result of their relatively low costs and characteristic isotropic properties. Reinforcement materials include carbides, nitrides and oxides. In an effort to achieve optimality in structure and properties of ceramic-reinforced metal matrix composites (MMCs), various fabrication and heat treatment techniques have evolved over the last 20 years. In this paper, the status of the research and development in fabrication and heat treatment techniques of ceramic-reinforced aluminium matrix composites is reviewed, with a major focus on material systems in terms of chemical compositions, weight or volume fraction, particle size of reinforcement, fabrication methods and heat treatment procedures. Various optical measurement techniques used by the researchers are highlighted. Also, limitations and needs of the technique in composite fabrication are presented in the literature. The full potential of various methods for fabricating ceramic-reinforced aluminium matrix composites is yet to be explored.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference59 articles.

1. Adalarasan, R, Shanmuga, PC, Arunachalam, R, & Sudhir, R. (2011). An evaluation of mechanical properties and microstructure of dispersion strengthened Al-6063 obtained by in-situ fabrication. International Journal on Design and Manufacturing Technologies, Sathyabama University, India, 5(2), 01–05.

2. Adeosun, SO, Balogun, SA, Sanni, OS, & Ayoola, WA. (2009). Improving the strength and ductility of wrought aluminum through particle addition. Pittsburgh: Materials Science and Technology (MS&T).

3. Alaneme, K. (2011). Corrosion behaviour of heat-treated Al-6063/ SiCp composites immersed in 5 wt% NaCl solution. Leonardo Journal of Sciences, 18, 55–64.

4. Alaneme, KK, & Aluko, AO. (2012). Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites. Scientia Iranica A, 19(4), 992–996.

5. Alaneme, KK, Ademilua, BO, & Bodunrin, MO. (2013). Mechanical properties and corrosion behaviour of aluminium hybrid composites reinforced with silicon carbide and bamboo leaf ash. Tribology in Industry, 35(1), 25–35.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3