Response and oil degradation activities of a northeast Atlantic bacterial community to biogenic and synthetic surfactants

Author:

Nikolova Christina N.,Ijaz Umer Zeeshan,Magill Clayton,Kleindienst Sara,Joye Samantha B.,Gutierrez TonyORCID

Abstract

Abstract Background Biosurfactants are naturally derived products that play a similar role to synthetic dispersants in oil spill response but are easily biodegradable and less toxic. Using a combination of analytical chemistry, 16S rRNA amplicon sequencing and simulation-based approaches, this study investigated the microbial community dynamics, ecological drivers, functional diversity and robustness, and oil biodegradation potential of a northeast Atlantic marine microbial community to crude oil when exposed to rhamnolipid or synthetic dispersant Finasol OSR52. Results Psychrophilic Colwellia and Oleispira dominated the community in both the rhamnolipid and Finasol OSR52 treatments initially but later community structure across treatments diverged significantly: Rhodobacteraceae and Vibrio dominated the Finasol-amended treatment, whereas Colwellia, Oleispira, and later Cycloclasticus and Alcanivorax, dominated the rhamnolipid-amended treatment. Key aromatic hydrocarbon-degrading bacteria, like Cycloclasticus, was not observed in the Finasol treatment but it was abundant in the oil-only and rhamnolipid-amended treatments. Overall, Finasol had a significant negative impact on the community diversity, weakened the taxa-functional robustness of the community, and caused a stronger environmental filtering, more so than oil-only and rhamnolipid-amended oil treatments. Rhamnolipid-amended and oil-only treatments had the highest functional diversity, however, the overall oil biodegradation was greater in the Finasol treatment, but aromatic biodegradation was highest in the rhamnolipid treatment. Conclusion Overall, the natural marine microbial community in the northeast Atlantic responded differently to crude oil dispersed with either synthetic or biogenic surfactants over time, but oil degradation was more enhanced by the synthetic dispersant. Collectively, our results advance the understanding of how rhamnolipid biosurfactants and synthetic dispersant Finasol affect the natural marine microbial community in the FSC, supporting their potential application in oil spills.

Funder

Natural Environment Research Council

German Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3