Characterisation of the koala (Phascolarctos cinereus) pouch microbiota in a captive population reveals a dysbiotic compositional profile associated with neonatal mortality

Author:

Maidment Toby I.,Bryan Emily R.,Pyne Michael,Barnes Michele,Eccleston Sarah,Cunningham Samantha,Whitlock Emma,Redman Kelsie,Nicolson Vere,Beagley Kenneth W.,Pelzer Elise

Abstract

Abstract Background Captive koala breeding programmes are essential for long-term species management. However, breeding efficacy is frequently impacted by high neonatal mortality rates in otherwise healthy females. Loss of pouch young typically occurs during early lactation without prior complications during parturition and is often attributed to bacterial infection. While these infections are thought to originate from the maternal pouch, little is known about the microbial composition of koala pouches. As such, we characterised the koala pouch microbiome across the reproductive cycle and identified bacteria associated with mortality in a cohort of 39 captive animals housed at two facilities. Results Using 16S rRNA gene amplicon sequencing, we observed significant changes in pouch bacterial composition and diversity between reproductive time points, with the lowest diversity observed following parturition (Shannon entropy — 2.46). Of the 39 koalas initially sampled, 17 were successfully bred, after which seven animals lost pouch young (overall mortality rate — 41.18%). Compared to successful breeder pouches, which were largely dominated by Muribaculaceae (phylum — Bacteroidetes), unsuccessful breeder pouches exhibited persistent Enterobacteriaceae (phylum — Proteobacteria) dominance from early lactation until mortality occurred. We identified two species, Pluralibacter gergoviae and Klebsiella pneumoniae, which were associated with poor reproductive outcomes. In vitro antibiotic susceptibility testing identified resistance in both isolates to several antibiotics commonly used in koalas, with the former being multidrug resistant. Conclusions This study represents the first cultivation-independent characterisation of the koala pouch microbiota, and the first such investigation in marsupials associated with reproductive outcomes. Overall, our findings provide evidence that overgrowth of pathogenic organisms in the pouch during early development is associated with neonatal mortality in captive koalas. Our identification of previously unreported, multidrug resistant P. gergoviae strains linked to mortality also underscores the need for improved screening and monitoring procedures aimed at minimising neonatal mortality in future.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference71 articles.

1. Gonzalez-Astudillo V, Allavena R, McKinnon A, Larkin R, Henning J. Decline causes of koalas in South East Queensland, Australia: a 17-year retrospective study of mortality and morbidity”. Sci Reports. 2017;7:42587.

2. Adams-Hosking C, McBride MF, Baxter G, Burgman M, de Villiers D, Kavanagh R, et al. Use of expert knowledge to elicit population trends for the koala (Phascolarctos cinereus). Biodivers Res. 2016;22:249–62.

3. McAlpine C, Lunney D, Melzer A, Menkhorst P, Phillips S, Phalen D, et al. Conserving koalas: a review of the contrasting regional trends, outlooks and policy challenges. Biol Conserv. 2015;192:226–36.

4. Nyari S, Waugh CA, Dong J, Quigley BL, Hanger J, Loader J, et al. Epidemiology of chlamydial infection and disease in a free-ranging koala (Phascolarctos cinereus) population. PLoS ONE. 2017;12:e0190114.

5. McCallum H, Kerlin DH, Ellis W, Carrick F. Assessing the significance of endemic disease in conservation—koalas, chlamydia, and koala retrovirus as a case study. Conserv Letters. 2018;11:e12425.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3