Author:
Mamtimin Tursunay,Han Huawen,Khan Aman,Feng Pengya,Zhang Qing,Ma Xiaobiao,Fang Yitian,Liu Pu,Kulshrestha Saurabh,Shigaki Toshiro,Li Xiangkai
Abstract
Abstract
Background
Some insects can degrade both natural and synthetic plastic polymers, their host and gut microbes play crucial roles in this process. However, there is still a scientific gap in understanding how the insect adapted to the polystyrene (PS) diet from natural feed. In this study, we analyzed diet consumption, gut microbiota responses, and metabolic pathways of Tenebrio molitor larvae exposed to PS and corn straw (CS).
Results
T. molitor larvae were incubated under controlled conditions (25 ± 1 °C, 75 ± 5% humidity) for 30 days by using PS foam with weight-, number-, and size-average molecular weight (Mw, Mn, and Mz) of 120.0, 73.2, and 150.7 kDa as a diet, respectively. The larvae exhibited lower PS consumption (32.5%) than CS (52.0%), and these diets had no adverse effects on their survival. The gut microbiota structures, metabolic pathways, and enzymatic profiles of PS- and CS-fed larvae showed similar responses. The gut microbiota of larvae analysis indicated Serratia sp., Staphylococcus sp., and Rhodococcus sp. were associated with both PS and CS diets. Metatranscriptomic analysis revealed that xenobiotics, aromatic compounds, and fatty acid degradation pathways were enriched in PS- and CS-fed groups; laccase-like multicopper oxidases, cytochrome P450, monooxygenase, superoxidase, and dehydrogenase were involved in lignin and PS degradation. Furthermore, the upregulated gene lac640 in both PS- and CS-fed groups was overexpressed in E. coli and exhibited PS and lignin degradation ability.
Conclusions
The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology