Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts

Author:

Mahmood SazzadORCID,Nováková EvaORCID,Martinů JanaORCID,Sychra OldřichORCID,Hypša VáclavORCID

Abstract

Abstract Background Wolbachia belong to highly abundant bacteria which are frequently found in invertebrate microbiomes and manifest by a broad spectrum of lifestyles from parasitism to mutualism. Wolbachia supergroup F is a particularly interesting clade as it gave rise to symbionts of both arthropods and nematodes, and some of its members are obligate mutualists. Investigations on evolutionary transitions among the different symbiotic stages have been hampered by a lack of the known diversity and genomic data for the supergroup F members. Results Based on amplicon screening, short- and long-read WGS approaches, and laser confocal microscopy, we characterize five new supergroup F Wolbachia strains from four chewing lice species. These strains reached different evolutionary stages and represent two remarkably different types of symbiont genomes. Three of the genomes resemble other known members of Wolbachia F supergroup, while the other two show typical signs of ongoing gene inactivation and removal (genome size, coding density, low number of pseudogenes). Particularly, wMeur1, a symbiont fixed in microbiomes of Menacanthus eurysternus across four continents, possesses a highly reduced genome of 733,850 bp. The horizontally acquired capacity for pantothenate synthesis and localization in specialized bacteriocytes suggest its obligate nutritional role. Conclusions The genome of wMeur1 strain, from the M. eurysternus microbiome, represents the smallest currently known Wolbachia genome and the first example of Wolbachia which has completed genomic streamlining as known from the typical obligate symbionts. This points out that despite the large amount and great diversity of the known Wolbachia strains, evolutionary potential of these bacteria still remains underexplored. The diversity of the four chewing lice microbiomes indicates that this vast parasitic group may provide suitable models for further investigations.

Funder

Grantová Agentura České Republiky

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3