Author:
Wang Daxi,Yang Xinglou,Ren Zirui,Hu Ben,Zhao Hailong,Yang Kaixin,Shi Peibo,Zhang Zhipeng,Feng Qikai,Nawenja Carol Vannesa,Obanda Vincent,Robert Kityo,Nalikka Betty,Waruhiu Cecilia Njeri,Ochola Griphin Ochieng,Onyuok Samson Omondi,Ochieng Harold,Li Bei,Zhu Yan,Si Haorui,Yin Jiefang,Kristiansen Karsten,Jin Xin,Xu Xun,Xiao Minfeng,Agwanda Bernard,Ommeh Sheila,Li Junhua,Shi Zheng-Li
Abstract
Abstract
Background
Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown.
Results
Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes.
Conclusions
The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife.
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Luis AD, Hayman DT, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, Mills JN, Timonin ME, Willis CK, Cunningham AA, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc Biol Sci. 2013;280(1756):20122753.
2. Han HJ, Wen HL, Zhou CM, Chen FF, Luo LM, Liu JW, Yu XJ. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 2015;205:1–6.
3. Han BA, Schmidt JP, Bowden SE, Drake JM. Rodent reservoirs of future zoonotic diseases. Proc Natl Acad Sci U S A. 2015;112(22):7039–44.
4. Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, Rambaut A, Robertson DL. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020;5(11):1408–17.
5. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13(11):e1006698.