Novel bacterial proteolytic and metabolic activity associated with dental erosion-induced oral dysbiosis

Author:

Cleaver Leanne M.,Carda-Diéguez Miguel,Moazzez Rebeca,Carpenter Guy H.

Abstract

Abstract Background Dental erosion is a disease of the oral cavity where acids cause a loss of tooth enamel and is defined as having no bacterial involvement. The tooth surface is protected from acid attack by salivary proteins that make up the acquired enamel pellicle (AEP). Bacteria have been shown to readily degrade salivary proteins, and some of which are present in the AEP. This study aimed to explore the role of bacteria in dental erosion using a multi-omics approach by comparing saliva collected from participants with dental erosion and healthy controls. Results Salivary proteomics was assessed by liquid-chromatography mass spectrometry (LC–MS) and demonstrated two altered AEP proteins in erosion, prolactin inducible protein (PIP), and zinc-alpha-2 glycoprotein (ZAG). Immunoblotting further suggested that degradation of PIP and ZAG is associated with erosion. Salivary microbiome analysis was performed by sequencing the bacterial 16S rRNA gene (V1-V2 region, Illumina) and showed that participants with dental erosion had a significantly (p < 0.05) less diverse microbiome than healthy controls (observed and Shannon diversity). Sequencing of bacterial mRNA for gene expression (Illumina sequencing) demonstrated that genes over-expressed in saliva from erosion participants included H + proton transporter genes, and three protease genes (msrAB, vanY, and ppdC). Salivary metabolomics was assessed using nuclear magnetic resonance spectrometry (NMR). Metabolite concentrations correlated with gene expression, demonstrating that the dental erosion group had strong correlations between metabolites associated with protein degradation and amino acid fermentation. Conclusions We conclude that microbial proteolysis of salivary proteins found in the protective acquired enamel pellicle strongly correlates with dental erosion, and we propose four novel microbial genes implicated in this process.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3