Latent antibiotic resistance genes are abundant, diverse, and mobile in human, animal, and environmental microbiomes

Author:

Inda-Díaz Juan Salvador,Lund David,Parras-Moltó Marcos,Johnning Anna,Bengtsson-Palme Johan,Kristiansson Erik

Abstract

Abstract Background Bacterial communities in humans, animals, and the external environment maintain a large collection of antibiotic resistance genes (ARGs). However, few of these ARGs are well-characterized and thus established in existing resistance gene databases. In contrast, the remaining latent ARGs are typically unknown and overlooked in most sequencing-based studies. Our view of the resistome and its diversity is therefore incomplete, which hampers our ability to assess risk for promotion and spread of yet undiscovered resistance determinants. Results A reference database consisting of both established and latent ARGs (ARGs not present in current resistance gene repositories) was created. By analyzing more than 10,000 metagenomic samples, we showed that latent ARGs were more abundant and diverse than established ARGs in all studied environments, including the human- and animal-associated microbiomes. The pan-resistomes, i.e., all ARGs present in an environment, were heavily dominated by latent ARGs. In comparison, the core-resistome, i.e., ARGs that were commonly encountered, comprised both latent and established ARGs. We identified several latent ARGs shared between environments and/or present in human pathogens. Context analysis of these genes showed that they were located on mobile genetic elements, including conjugative elements. We, furthermore, identified that wastewater microbiomes had a surprisingly large pan- and core-resistome, which makes it a potentially high-risk environment for the mobilization and promotion of latent ARGs. Conclusions Our results show that latent ARGs are ubiquitously present in all environments and constitute a diverse reservoir from which new resistance determinants can be recruited to pathogens. Several latent ARGs already had high mobile potential and were present in human pathogens, suggesting that they may constitute emerging threats to human health. We conclude that the full resistome—including both latent and established ARGs—needs to be considered to properly assess the risks associated with antibiotic selection pressures.

Funder

Vetenskapsrådet

Knut och Alice Wallenbergs Stiftelse

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3