Bacteroides uniformis CECT 7771 requires adaptive immunity to improve glucose tolerance but not to prevent body weight gain in diet-induced obese mice

Author:

Romaní-Pérez Marina,López-Almela Inmaculada,Bullich-Vilarrubias Clara,Evtoski Zoran,Benítez-Páez Alfonso,Sanz Yolanda

Abstract

Abstract Background The metabolic disturbances of obesity can be mitigated by strategies modulating the gut microbiota. In this study, we sought to identify whether innate or adaptive immunity mediates the beneficial metabolic effects of the human intestinal bacterium Bacteroides uniformis CECT 7771 in obesity. Methods We evaluated the effects of orally administered B. uniformis on energy homeostasis, intestinal immunity, hormone levels, and gut microbiota in wild-type and Rag1-deficient mice with diet-induced obesity. We also assessed whether B. uniformis needed to be viable to exert its beneficial effects in obesity and to directly induce immunoregulatory effects. Results The administration of B. uniformis to obese mice improved glucose tolerance and insulin secretion, restored the caloric intake suppression after an oral glucose challenge, and reduced hyperglycemia. The pre- and post-prandial glucose-related benefits were associated with restoration of the anti-inflammatory tone mediated by type 2 macrophages and regulatory T cells (Tregs) in the lamina propria of the small intestine. Contrastingly, B. uniformis administration failed to improve glucose tolerance in obese Rag1-/- mice, but prevented the increased body weight gain and adiposity. Overall, the beneficial effects seemed to be independent of enteroendocrine effects and of major changes in gut microbiota composition. B. uniformis directly induced Tregs generation from naïve CD4+ T cells in vitro and was not required to be viable to improve glucose homeostasis but its viability was necessary to prevent body weight gain in diet-induced obese wild-type mice. Conclusions Here we demonstrate that B. uniformis modulates the energy homeostasis in diet-induced obese mice through different mechanisms. The bacterium improves oral glucose tolerance by adaptive immunity-dependent mechanisms that do not require cell viability and prevents body weight gain by adaptive immunity-independent mechanisms which require cell viability.

Funder

Seventh Framework Programme

Ministerio de Ciencia e Innovación

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3