Degradation pathways for organic matter of terrestrial origin are widespread and expressed in Arctic Ocean microbiomes

Author:

Grevesse Thomas,Guéguen Céline,Onana Vera E.,Walsh David A.

Abstract

Abstract Background The Arctic Ocean receives massive freshwater input and a correspondingly large amount of humic-rich organic matter of terrestrial origin. Global warming, permafrost melt, and a changing hydrological cycle will contribute to an intensification of terrestrial organic matter release to the Arctic Ocean. Although considered recalcitrant to degradation due to complex aromatic structures, humic substances can serve as substrate for microbial growth in terrestrial environments. However, the capacity of marine microbiomes to process aromatic-rich humic substances, and how this processing may contribute to carbon and nutrient cycling in a changing Arctic Ocean, is relatively unexplored. Here, we used a combination of metagenomics and metatranscriptomics to assess the prevalence and diversity of metabolic pathways and bacterial taxa involved in aromatic compound degradation in the salinity-stratified summer waters of the Canada Basin in the western Arctic Ocean. Results Community-scale meta-omics profiling revealed that 22 complete pathways for processing aromatic compounds were present and expressed in the Canada Basin, including those for aromatic ring fission and upstream funneling pathways to access diverse aromatic compounds of terrestrial origin. A phylogenetically diverse set of functional marker genes and transcripts were associated with fluorescent dissolved organic matter, a component of which is of terrestrial origin. Pathways were common throughout global ocean microbiomes but were more abundant in the Canada Basin. Genome-resolved analyses identified 12 clades of Alphaproteobacteria, including Rhodospirillales, as central contributors to aromatic compound processing. These genomes were mostly restricted in their biogeographical distribution to the Arctic Ocean and were enriched in aromatic compound processing genes compared to their closest relatives from other oceans. Conclusion Overall, the detection of a phylogenetically diverse set of genes and transcripts implicated in aromatic compound processing supports the view that Arctic Ocean microbiomes have the capacity to metabolize humic substances of terrestrial origin. In addition, the demonstration that bacterial genomes replete with aromatic compound degradation genes exhibit a limited distribution outside of the Arctic Ocean suggests that processing humic substances is an adaptive trait of the Arctic Ocean microbiome. Future increases in terrestrial organic matter input to the Arctic Ocean may increase the prominence of aromatic compound processing bacteria and their contribution to Arctic carbon and nutrient cycles.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3