Holobiont nitrogen control and its potential for eutrophication resistance in an obligate photosymbiotic jellyfish

Author:

Röthig TillORCID,Puntin Giulia,Wong Jane C. Y.,Burian Alfred,McLeod Wendy,Baker David M.

Abstract

Abstract Background Marine holobionts depend on microbial members for health and nutrient cycling. This is particularly evident in cnidarian-algae symbioses that facilitate energy and nutrient acquisition. However, this partnership is highly sensitive to environmental change—including eutrophication—that causes dysbiosis and contributes to global coral reef decline. Yet, some holobionts exhibit resistance to dysbiosis in eutrophic environments, including the obligate photosymbiotic scyphomedusa Cassiopea xamachana. Methods Our aim was to assess the mechanisms in C. xamachana that stabilize symbiotic relationships. We combined labelled bicarbonate (13C) and nitrate (15N) with metabarcoding approaches to evaluate nutrient cycling and microbial community composition in symbiotic and aposymbiotic medusae. Results C-fixation and cycling by algal Symbiodiniaceae was essential for C. xamachana as even at high heterotrophic feeding rates aposymbiotic medusae continuously lost weight. Heterotrophically acquired C and N were readily shared among host and algae. This was in sharp contrast to nitrate assimilation by Symbiodiniaceae, which appeared to be strongly restricted. Instead, the bacterial microbiome seemed to play a major role in the holobiont’s DIN assimilation as uptake rates showed a significant positive relationship with phylogenetic diversity of medusa-associated bacteria. This is corroborated by inferred functional capacity that links the dominant bacterial taxa (~90 %) to nitrogen cycling. Observed bacterial community structure differed between apo- and symbiotic C. xamachana putatively highlighting enrichment of ammonium oxidizers and nitrite reducers and depletion of nitrogen-fixers in symbiotic medusae. Conclusion Host, algal symbionts, and bacterial associates contribute to regulated nutrient assimilation and cycling in C. xamachana. We found that the bacterial microbiome of symbiotic medusae was seemingly structured to increase DIN removal and enforce algal N-limitation—a mechanism that would help to stabilize the host-algae relationship even under eutrophic conditions.

Funder

The University of Hong Kong, Faculty of Science, Division of Ecology and Biodiversity.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3