Metagenomic insights into the microbe-mediated B and K2 vitamin biosynthesis in the gastrointestinal microbiome of ruminants

Author:

Jiang Qian,Lin Limei,Xie Fei,Jin Wei,Zhu Weiyun,Wang Min,Qiu Qiang,Li Zhipeng,Liu Junhua,Mao ShengyongORCID

Abstract

AbstractBackgroundB and K2vitamins, essential nutrients in host metabolism, can be synthesized by the rumen microbiome in ruminants and subsequently absorbed by the host. However, the B and K2vitamin biosynthesis by the whole gastrointestinal microbiome and their abundances in different dietary strategies are largely unknown. Here, we reanalyzed our previous large-scale metagenomic data on the gastrointestinal microbiome of seven ruminant species and recruited 17,425 nonredundant microbial genomes from published datasets to gain a comprehensive understanding of the microbe-mediated B and K2vitamin biosynthesis in ruminants.ResultsWe identified 1,135,807 genes and 167 enzymes involved in B and K2vitamin biosynthesis. Our results indicated that the total abundances of B and K2vitamin biosynthesis were dominant in the stomach microbiome, while the biosynthesis of thiamine, niacin, and pyridoxine was more abundant in the large intestine. By examining 17,425 nonredundant genomes, we identified 2366 high-quality genomes that were predicted to de novo biosynthesize at least one vitamin. Genomic analysis suggested that only 2.7% of these genomes can synthesize five or more vitamins, and nearly half of genomes can synthesize only one vitamin. Moreover, we found that most genomes possessed cobalamin transporters or cobalamin-dependent enzymes to consume cobalamin directly, and only a few microbial genomes possessed a complete cobalamin biosynthesis pathway. Based on these genomic data, we examined the effect of the high-grain (HG) diet on the vitamin biosynthesis of the rumen microbiome of dairy cattle. We revealed that most vitamin biosynthesis was enhanced in the HG group, while only cobalamin synthesis was inhibited in the HG group, indicating that dietary fiber is vital for cobalamin biosynthesis.ConclusionsWe primarily provided a gene catalog and 2366 microbial genomes involved in B and K2vitamin biosynthesis in ruminants. Our findings demonstrated the regional heterogeneity and dietary effect of vitamin biosynthetic potential in the ruminant gastrointestinal microbiome and interpreted the biosynthesis mechanisms of these microbes and their physiological adaptability. This study expands our understanding of microbe-mediated vitamin biosynthesis in ruminants and may provide novel targets for manipulation to improve the production of these essential vitamins.

Funder

National Key research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3