Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie, and tropical ecosystems

Author:

Qian Xun,Gunturu Santosh,Guo Jiarong,Chai Benli,Cole James R.,Gu Jie,Tiedje James M.

Abstract

Abstract Background Soil is an important reservoir of antibiotic resistance genes (ARGs), but their potential risk in different ecosystems as well as response to anthropogenic land use change is unknown. We used a metagenomic approach and datasets with well-characterized metadata to investigate ARG types and amounts in soil DNA of three native ecosystems: Alaskan tundra, US Midwestern prairie, and Amazon rainforest, as well as the effect of conversion of the latter two to agriculture and pasture, respectively. Results High diversity (242 ARG subtypes) and abundance (0.184–0.242 ARG copies per 16S rRNA gene copy) were observed irrespective of ecosystem, with multidrug resistance and efflux pump the dominant class and mechanism. Ten regulatory genes were identified and they accounted for 13–35% of resistome abundances in soils, among them arlR, cpxR, ompR, vanR, and vanS were dominant and observed in all studied soils. We identified 55 non-regulatory ARGs shared by all 26 soil metagenomes of the three ecosystems, which accounted for more than 81% of non-regulatory resistome abundance. Proteobacteria, Firmicutes, and Actinobacteria were primary ARG hosts, 7 of 10 most abundant ARGs were found in all of them. No significant differences in both ARG diversity and abundance were observed between native prairie soil and adjacent long-term cultivated agriculture soil. We chose 12 clinically important ARGs to evaluate at the sequence level and found them to be distinct from those in human pathogens, and when assembled they were even more dissimilar. Significant correlation was found between bacterial community structure and resistome profile, suggesting that variance in resistome profile was mainly driven by the bacterial community composition. Conclusions Our results identify candidate background ARGs (shared in all 26 soils), classify ARG hosts, quantify resistance classes, and provide quantitative and sequence information suggestive of very low risk but also revealing resistance gene variants that might emerge in the future.

Funder

Michigan State University

Northwest A and F University

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3