Presence and role of viruses in anaerobic digestion of food waste under environmental variability

Author:

Fan Lu,Peng Wei,Duan Haowen,Lü Fan,Zhang Hua,He Pinjing

Abstract

Abstract Background The interaction among microorganisms in the anaerobic digestion of food waste (ADFW) reactors lead to the degradation of organics and the recycling of energy. Viruses are an important component of the microorganisms involved in ADFW, but are rarely investigated. Furthermore, little is known about how viruses affect methanogenesis. Results Thousands of viral sequences were recovered from five full-scale ADFW reactors. Gene-sharing networks indicated that the ADFW samples contained substantial numbers of unexplored anaerobic-specific viruses. Moreover, the viral communities in five full-scale reactors exhibited both commonalities and heterogeneities. The lab-scale dynamic analysis of typical ADFW scenarios suggested that the viruses had similar kinetic characteristics to their prokaryotic hosts. By associating with putative hosts, a majority of the bacteria and archaea phyla were found to be infected by viruses. Viruses may influence prokaryotic ecological niches, and thus methanogenesis, by infecting key functional microorganisms, such as sulfate-reducing bacteria (SRB), syntrophic acetate-oxidizing bacteria (SAOB), and methanogens. Metabolic predictions for the viruses suggested that they may collaborate with hosts at key steps of sulfur and long-chain fatty acid (LCFA) metabolism and could be involved in typical methanogenesis pathways to participate in methane production. Conclusions Our results expanded the diversity of viruses in ADFW systems and suggested two ways that viral manipulated ADFW biochemical processes.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3