Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes

Author:

Moon Kira,Jeon Jeong Ho,Kang Ilnam,Park Kwang Seung,Lee Kihyun,Cha Chang-Jun,Lee Sang Hee,Cho Jang-CheonORCID

Abstract

Abstract Background Antibiotic resistance developed by bacteria is a significant threat to global health. Antibiotic resistance genes (ARGs) spread across different bacterial populations through multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages. ARGs carried by bacteriophages are considered especially threatening due to their prolonged persistence in the environment, fast replication rates, and ability to infect diverse bacterial hosts. Several studies employing qPCR and viral metagenomics have shown that viral fraction and viral sequence reads in clinical and environmental samples carry many ARGs. However, only a few ARGs have been found in viral contigs assembled from metagenome reads, with most of these genes lacking effective antibiotic resistance phenotypes. Owing to the wide application of viral metagenomics, nevertheless, different classes of ARGs are being continuously found in viral metagenomes acquired from diverse environments. As such, the presence and functionality of ARGs encoded by bacteriophages remain up for debate. Results We evaluated ARGs excavated from viral contigs recovered from urban surface water viral metagenome data. In virome reads and contigs, diverse ARGs, including polymyxin resistance genes, multidrug efflux proteins, and β-lactamases, were identified. In particular, when a lenient threshold of e value of ≤ 1 × e−5 and query coverage of ≥ 60% were employed in the Resfams database, the novel β-lactamases blaHRV-1 and blaHRVM-1 were found. These genes had unique sequences, forming distinct clades of class A and subclass B3 β-lactamases, respectively. Minimum inhibitory concentration analyses for E. coli strains harboring blaHRV-1 and blaHRVM-1 and catalytic kinetics of purified HRV-1 and HRVM-1 showed reduced susceptibility to penicillin, narrow- and extended-spectrum cephalosporins, and carbapenems. These genes were also found in bacterial metagenomes, indicating that they were harbored by actively infecting phages. Conclusion Our results showed that viruses in the environment carry as-yet-unreported functional ARGs, albeit in small quantities. We thereby suggest that environmental bacteriophages could be reservoirs of widely variable, unknown ARGs that could be disseminated via virus-host interactions.

Funder

Ministry of Environment

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference83 articles.

1. World Health Organization (WHO). Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early implementation 2017-2018. Geneva: WHO; 2018. https://www.who.int/docs/default-source/searo/amr/global-antimicrobial-resistance-surveillance-system%2D%2D-glass-report-early-implementation-2017-2018.pdf?sfvrsn=7e629fec_6. Accessed 28 Aug 2019.

2. Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidermiol. 2015;5:28564.

3. von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through Horizontal Gene Transfer. Front Microbiol. 2016;7:173.

4. Yu P, Mathieu J, Li M, Dai Z, Alvarez PJ. Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl Environ Microbiol. 2016;82:808–15.

5. Brown-Jaque M, Calero-Cáceres W, Muniesa M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid. 2015;79:1–7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3