Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome

Author:

Huang ZhijianORCID,Zeng Shenzheng,Xiong Jinbo,Hou Dongwei,Zhou Renjun,Xing Chengguang,Wei Dongdong,Deng Xisha,Yu Lingfei,Wang Hao,Deng Zhixuan,Weng Shaoping,Kriengkrai Satapornvanit,Ning Daliang,Zhou Jizhong,He Jianguo

Abstract

Abstract Background Recently, increasing evidence supports that some complex diseases are not attributed to a given pathogen, but dysbiosis in the host intestinal microbiota (IM). The full intestinal ecosystem alterations, rather than a single pathogen, are associated with white feces syndrome (WFS), a globally severe non-infectious shrimp disease, while no experimental evidence to explore the causality. Herein, we conducted comprehensive metagenomic and metabolomic analysis, and intestinal microbiota transplantation (IMT) to investigate the causal relationship between IM dysbiosis and WFS. Results Compared to the Control shrimp, we found dramatically decreased microbial richness and diversity in WFS shrimp. Ten genera, such as Vibrio, Candidatus Bacilloplasma, Photobacterium, and Aeromonas, were overrepresented in WFS, whereas 11 genera, including Shewanella, Chitinibacter, and Rhodobacter were enriched in control. The divergent changes in these populations might contribute the observation that a decline of pathways conferring lipoic acid metabolism and mineral absorption in WFS. Meanwhile, some sorts of metabolites, especially lipids and organic acids, were found to be related to the IM alteration in WFS. Integrated with multiomics and IMT, we demonstrated that significant alterations in the community composition, functional potentials, and metabolites of IM were closely linked to shrimp WFS. The distinguished metabolites which were attributed to the IM dysbiosis were validated by feed-supplementary challenge. Both homogenous selection and heterogeneous selection process were less pronounced in WFS microbial community assembly. Notably, IMT shrimp from WFS donors eventually developed WFS clinical signs, while the dysbiotic IM can be recharacterized in recipient shrimp. Conclusions Collectively, our findings offer solid evidence of the causality between IM dysbiosis and shrimp WFS, which exemplify the ‘microecological Koch’s postulates’ (an intestinal microbiota dysbiosis, a disease) in disease etiology, and inspire our cogitation on etiology from an ecological perspective.

Funder

the China Agriculture Research System

China-ASEAN Maritime Cooperation Fund

Guangdong MEPP Fund

the Guangzhou Science Technology and Innovation Commission Project

the Guangdong Ocean and Fishery Bureau Project

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3