Microbiota in mesenteric adipose tissue from Crohn’s disease promote colitis in mice

Author:

He Zhen,Wu Jinjie,Gong Junli,Ke Jia,Ding Tao,Zhao Wenjing,Cheng Wai Ming,Luo Zhanhao,He Qilang,Zeng Wanyi,Yu Jing,Jiao Na,Liu Yanmin,Zheng Bin,Dai Lei,Zhi Min,Wu Xiaojian,Jobin Christian,Lan PingORCID

Abstract

Abstract Background Mesenteric adipose tissue (mAT) hyperplasia, known as creeping fat is a pathologic characteristic of Crohn’s disease (CD). The reserve of creeping fat in surgery is associated with poor prognosis of CD patients, but the mechanism remains unknown. Methods Mesenteric microbiome, metabolome, and host transcriptome were characterized using a cohort of 48 patients with CD and 16 non-CD controls. Multidimensional data including 16S ribosomal RNA gene sequencing (16S rRNA), host RNA sequencing, and metabolome were integrated to reveal network interaction. Mesenteric resident bacteria were isolated from mAT and functionally investigated both in the dextran sulfate sodium (DSS) model and in the Il10 gene-deficient (Il10−/−) mouse colitis model to validate their pro-inflammatory roles. Results Mesenteric microbiota contributed to aberrant metabolites production and transcripts in mATs from patients with CD. The presence of mAT resident microbiota was associated with the development of CD. Achromobacter pulmonis (A. pulmonis) isolated from CD mAT could translocate to mAT and exacerbate both DSS-induced and Il10 gene-deficient (Il10−/−) spontaneous colitis in mice. The levels of A. pulmonis in both mAT and mucous layer from CD patients were higher compared to those from the non-CD group. Conclusions This study suggests that the mesenteric microbiota from patients with CD sculpt a detrimental microenvironment and promote intestinal inflammation.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Science and Technology Program of Shenzhen

Natural Science Foundation of Guangdong Province, China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3