Abstract
AbstractBackgroundChitin ranks as the most abundant polysaccharide in the oceans yet knowledge of shifts in structure and diversity of chitin-degrading communities across marine niches is scarce. Here, we integrate cultivation-dependent and -independent approaches to shed light on the chitin processing potential within the microbiomes of marine sponges, octocorals, sediments, and seawater.ResultsWe found that cultivatable host-associated bacteria in the generaAquimarina,Enterovibrio,Microbulbifer,Pseudoalteromonas,Shewanella, andVibriowere able to degrade colloidal chitin in vitro. Congruent with enzymatic activity bioassays, genome-wide inspection of cultivated symbionts revealed thatVibrioandAquimarinaspecies, particularly, possess several endo- and exo-chitinase-encoding genes underlying their ability to cleave the large chitin polymer into oligomers and dimers. Conversely,Alphaproteobacteriaspecies were found to specialize in the utilization of the chitin monomer N-acetylglucosamine more often. Phylogenetic assessments uncovered a high degree of within-genome diversification of multiple, full-length endo-chitinase genes forAquimarinaandVibriostrains, suggestive of a versatile chitin catabolism aptitude. We then analyzed the abundance distributions of chitin metabolism-related genes across 30 Illumina-sequenced microbial metagenomes and found that the endosymbiotic consortium ofSpongia officinalisis enriched in polysaccharide deacetylases, suggesting the ability of the marine sponge microbiome to convert chitin into its deacetylated—and biotechnologically versatile—form chitosan. Instead, the abundance of endo-chitinase and chitin-binding protein-encoding genes in healthy octocorals leveled up with those from the surrounding environment but was found to be depleted in necrotic octocoral tissue. Using cultivation-independent, taxonomic assignments of endo-chitinase encoding genes, we unveiled previously unsuspected richness and divergent structures of chitinolytic communities across host-associated and free-living biotopes, revealing putative roles for uncultivatedGammaproteobacteriaandChloroflexisymbionts in chitin processing within sessile marine invertebrates.ConclusionsOur findings suggest that differential chitin degradation pathways, utilization, and turnover dictate the processing of chitin across marine micro-niches and support the hypothesis that inter-species cross-feeding could facilitate the co-existence of chitin utilizers within marine invertebrate microbiomes. We further identified chitin metabolism functions which may serve as indicators of microbiome integrity/dysbiosis in corals and reveal putative novel chitinolytic enzymes in the genusAquimarinathat may find applications in the blue biotechnology sector.
Funder
Fundação para a Ciência e a Tecnologia
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献