Selection for environmental variance shifted the gut microbiome composition driving animal resilience

Author:

Casto-Rebollo Cristina,Argente María José,García María Luz,Pena Ramona Natacha,Blasco Agustín,Ibáñez-Escriche Noelia

Abstract

Abstract Background Understanding how the host’s microbiome shapes phenotypes and participates in the host response to selection is fundamental for evolutionists and animal and plant breeders. Currently, selection for resilience is considered a critical step in improving the sustainability of livestock systems. Environmental variance (VE), the within-individual variance of a trait, has been successfully used as a proxy for animal resilience. Selection for reduced VE could effectively shift gut microbiome composition; reshape the inflammatory response, triglyceride, and cholesterol levels; and drive animal resilience. This study aimed to determine the gut microbiome composition underlying the VE of litter size (LS), for which we performed a metagenomic analysis in two rabbit populations divergently selected for low (n = 36) and high (n = 34) VE of LS. Partial least square-discriminant analysis and alpha- and beta-diversity were computed to determine the differences in gut microbiome composition among the rabbit populations. Results We identified 116 KEGG IDs, 164 COG IDs, and 32 species with differences in abundance between the two rabbit populations studied. These variables achieved a classification performance of the VE rabbit populations of over than 80%. Compared to the high VE population, the low VE (resilient) population was characterized by an underrepresentation of Megasphaera sp., Acetatifactor muris, Bacteroidetes rodentium, Ruminococcus bromii, Bacteroidetes togonis, and Eggerthella sp. and greater abundances of Alistipes shahii, Alistipes putredinis, Odoribacter splanchnicus, Limosilactobacillus fermentum, and Sutterella, among others. Differences in abundance were also found in pathways related to biofilm formation, quorum sensing, glutamate, and amino acid aromatic metabolism. All these results suggest differences in gut immunity modulation, closely related to resilience. Conclusions This is the first study to show that selection for VE of LS can shift the gut microbiome composition. The results revealed differences in microbiome composition related to gut immunity modulation, which could contribute to the differences in resilience among rabbit populations. The selection-driven shifts in gut microbiome composition should make a substantial contribution to the remarkable genetic response observed in the VE rabbit populations.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3