Author:
Corrêa Renan Oliveira,Castro Pollyana Ribeiro,Fachi José Luís,Nirello Vinícius Dias,El-Sahhar Salma,Imada Shinya,Pereira Gabriel Vasconcelos,Pral Laís Passariello,Araújo Nathália Vitoria Pereira,Fernandes Mariane Font,Matheus Valquíria Aparecida,de Souza Felipe Jaqueline,dos Santos Pereira Gomes Arilson Bernardo,de Oliveira Sarah,de Rezende Rodovalho Vinícius,de Oliveira Samantha Roberta Machado,de Assis Helder Carvalho,Oliveira Sergio Costa,Dos Santos Martins Flaviano,Martens Eric,Colonna Marco,Varga-Weisz Patrick,Vinolo Marco Aurélio Ramirez
Abstract
Abstract
Background
The continuous proliferation of intestinal stem cells followed by their tightly regulated differentiation to epithelial cells is essential for the maintenance of the gut epithelial barrier and its functions. How these processes are tuned by diet and gut microbiome is an important, but poorly understood question. Dietary soluble fibers, such as inulin, are known for their ability to impact the gut bacterial community and gut epithelium, and their consumption has been usually associated with health improvement in mice and humans. In this study, we tested the hypothesis that inulin consumption modifies the composition of colonic bacteria and this impacts intestinal stem cells functions, thus affecting the epithelial structure.
Methods
Mice were fed with a diet containing 5% of the insoluble fiber cellulose or the same diet enriched with an additional 10% of inulin. Using a combination of histochemistry, host cell transcriptomics, 16S microbiome analysis, germ-free, gnotobiotic, and genetically modified mouse models, we analyzed the impact of inulin intake on the colonic epithelium, intestinal bacteria, and the local immune compartment.
Results
We show that the consumption of inulin diet alters the colon epithelium by increasing the proliferation of intestinal stem cells, leading to deeper crypts and longer colons. This effect was dependent on the inulin-altered gut microbiota, as no modulations were observed in animals deprived of microbiota, nor in mice fed cellulose-enriched diets. We also describe the pivotal role of γδ T lymphocytes and IL-22 in this microenvironment, as the inulin diet failed to induce epithelium remodeling in mice lacking this T cell population or cytokine, highlighting their importance in the diet-microbiota-epithelium-immune system crosstalk.
Conclusion
This study indicates that the intake of inulin affects the activity of intestinal stem cells and drives a homeostatic remodeling of the colon epithelium, an effect that requires the gut microbiota, γδ T cells, and the presence of IL-22. Our study indicates complex cross kingdom and cross cell type interactions involved in the adaptation of the colon epithelium to the luminal environment in steady state.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献