Author:
Taylor Savannah J.,Winter Maria G.,Gillis Caroline C.,Silva Laice Alves da,Dobbins Amanda L.,Muramatsu Matthew K.,Jimenez Angel G.,Chanin Rachael B.,Spiga Luisella,Llano Ernesto M.,Rojas Vivian K.,Kim Jiwoong,Santos Renato L.,Zhu Wenhan,Winter Sebastian E.
Abstract
Abstract
Background
Intestinal inflammation disrupts the microbiota composition leading to an expansion of Enterobacteriaceae family members (dysbiosis). Associated with this shift in microbiota composition is a profound change in the metabolic landscape of the intestine. It is unclear how changes in metabolite availability during gut inflammation impact microbial and host physiology.
Results
We investigated microbial and host lactate metabolism in murine models of infectious and non-infectious colitis. During inflammation-associated dysbiosis, lactate levels in the gut lumen increased. The disease-associated spike in lactate availability was significantly reduced in mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells. Commensal E. coli and pathogenic Salmonella, representative Enterobacteriaceae family members, utilized lactate via the respiratory L-lactate dehydrogenase LldD to increase fitness. Furthermore, mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells exhibited lower levels of inflammation in a model of non-infectious colitis.
Conclusions
The release of lactate by intestinal epithelial cells during gut inflammation impacts the metabolism of gut-associated microbial communities. These findings suggest that during intestinal inflammation and dysbiosis, changes in metabolite availability can perpetuate colitis-associated disturbances of microbiota composition.
Funder
National Institute of Allergy and Infectious Diseases
National Institute of Diabetes and Digestive and Kidney Diseases
Welch Foundation
Burroughs Wellcome Fund
American Cancer Society
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献