Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation

Author:

Carrión OrnellaORCID,Gibson Lisa,Elias Dafydd M. O.,McNamara Niall P.,van Alen Theo A.,Op den Camp Huub J. M.,Supramaniam Christina Vimala,McGenity Terry J.,Murrell J. Colin

Abstract

Abstract Background Isoprene is the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, with annual global emissions almost equal to those of methane. Despite its importance in atmospheric chemistry and climate, little is known about the biological degradation of isoprene in the environment. The largest source of isoprene is terrestrial plants, and oil palms, the cultivation of which is expanding rapidly, are among the highest isoprene-producing trees. Results DNA stable isotope probing (DNA-SIP) to study the microbial isoprene-degrading community associated with oil palm trees revealed novel genera of isoprene-utilising bacteria including Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea in both oil palm soils and on leaves. Amplicon sequencing of isoA genes, which encode the α-subunit of the isoprene monooxygenase (IsoMO), a key enzyme in isoprene metabolism, confirmed that oil palm trees harbour a novel diversity of isoA sequences. In addition, metagenome-assembled genomes (MAGs) were reconstructed from oil palm soil and leaf metagenomes and putative isoprene degradation genes were identified. Analysis of unenriched metagenomes showed that isoA-containing bacteria are more abundant in soils than in the oil palm phyllosphere. Conclusion This study greatly expands the known diversity of bacteria that can metabolise isoprene and contributes to a better understanding of the biological degradation of this important but neglected climate-active gas.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference76 articles.

1. Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ. 2003;37:197–219.

2. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev. 2012;5:1471–92.

3. United Nations Statistics Division: The sustainable development goals report 2019. https://unstats.un.org/sdgs/report/2019 (2019). Accessed 6 Mar 2020.

4. Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, et al. Sustainable development goals for people and planet. Nature. 2013;495:305–7.

5. Monson RK, Trahan N, Rosenstiel TN, Veres P, Moore D, Wilkinson M, et al. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philos Trans A Math Phys Eng Sci. 2007;365:1677–95.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3