Microbiota analysis optimization for human bronchoalveolar lavage fluid

Author:

Schneeberger Pierre H. H.,Prescod Janice,Levy Liran,Hwang David,Martinu Tereza,Coburn Bryan

Abstract

Abstract Background It is now possible to comprehensively characterize the microbiota of the lungs using culture-independent, sequencing-based assays. Several sample types have been used to investigate the lung microbiota, each presenting specific challenges for preparation and analysis of microbial communities. Bronchoalveolar lavage fluid (BALF) enables the identification of microbiota specific to the lower lung but commonly has low bacterial density, increasing the risk of false-positive signal from contaminating DNA. The objectives of this study were to investigate the extent of contamination across a range of sample densities representative of BALF and identify features of contaminants that facilitate their removal from sequence data and aid in the interpretation of BALF sample 16S sequencing data. Results Using three mock communities across a range of densities ranging from 8E+ 02 to 8E+ 09 16S copies/ml, we assessed taxonomic accuracy and precision by 16S rRNA gene sequencing and the proportion of reads arising from contaminants. Sequencing accuracy, precision, and the relative abundance of mock community members decreased with sample input density, with a significant drop-off below 8E+ 05 16S copies/ml. Contaminant OTUs were commonly inversely correlated with sample input density or not reproduced between technical replicates. Removal of taxa with these features or physical concentration of samples prior to sequencing improved both sequencing accuracy and precision for samples between 8E+ 04 and 8E+ 06 16S copies/ml. For the lowest densities, below 8E+ 03 16S copies/ml BALF, accuracy and precision could not be significantly improved using these approaches. Using clinical BALF samples across a large density range, we observed that OTUs with features of contaminants identified in mock communities were also evident in low-density BALF samples. Conclusion Relative abundance data and community composition generated by 16S sequencing of BALF samples across the range of density commonly observed in this sample type should be interpreted in the context of input sample density and may be improved by simple pre- and post-sequencing steps for densities above 8E+ 04 16S copies/ml.

Funder

CIHR

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3