Author:
Han Yan,Zeng Xinglin,Hua Lin,Quan Xingping,Chen Ying,Zhou Manfei,Chuang Yaochen,Li Yang,Wang Shengpeng,Shen Xu,Wei Lai,Yuan Zhen,Zhao Yonghua
Abstract
Abstract
Background
The increasing prevalence of neurocognitive disorders (NCDs) in the aging population worldwide has become a significant concern due to subjectivity of evaluations and the lack of precise diagnostic methods and specific indicators. Developing personalized diagnostic strategies for NCDs has therefore become a priority.
Results
Multimodal electroencephalography (EEG) data of a matched cohort of normal aging (NA) and NCDs seniors were recorded, and their faecal samples and urine exosomes were collected to identify multi-omics signatures and metabolic pathways in NCDs by integrating metagenomics, proteomics, and metabolomics analysis. Additionally, experimental verification of multi-omics signatures was carried out in aged mice using faecal microbiota transplantation (FMT). We found that NCDs seniors had low EEG power spectral density and identified specific microbiota, including Ruminococcus gnavus, Enterocloster bolteae, Lachnoclostridium sp. YL 32, and metabolites, including L-tryptophan, L-glutamic acid, gamma-aminobutyric acid (GABA), and fatty acid esters of hydroxy fatty acids (FAHFAs), as well as disturbed biosynthesis of aromatic amino acids and TCA cycle dysfunction, validated in aged mice. Finally, we employed a support vector machine (SVM) algorithm to construct a machine learning model to classify NA and NCDs groups based on the fusion of EEG data and multi-omics profiles and the model demonstrated 92.69% accuracy in classifying NA and NCDs groups.
Conclusions
Our study highlights the potential of multi-omics profiling and EEG data fusion in personalized diagnosis of NCDs, with the potential to improve diagnostic precision and provide insights into the underlying mechanisms of NCDs.
Funder
Science and Technology Development Fund, Macau SAR
University of Macau
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献