The fusion of multi-omics profile and multimodal EEG data contributes to the personalized diagnostic strategy for neurocognitive disorders

Author:

Han Yan,Zeng Xinglin,Hua Lin,Quan Xingping,Chen Ying,Zhou Manfei,Chuang Yaochen,Li Yang,Wang Shengpeng,Shen Xu,Wei Lai,Yuan Zhen,Zhao Yonghua

Abstract

Abstract Background The increasing prevalence of neurocognitive disorders (NCDs) in the aging population worldwide has become a significant concern due to subjectivity of evaluations and the lack of precise diagnostic methods and specific indicators. Developing personalized diagnostic strategies for NCDs has therefore become a priority. Results Multimodal electroencephalography (EEG) data of a matched cohort of normal aging (NA) and NCDs seniors were recorded, and their faecal samples and urine exosomes were collected to identify multi-omics signatures and metabolic pathways in NCDs by integrating metagenomics, proteomics, and metabolomics analysis. Additionally, experimental verification of multi-omics signatures was carried out in aged mice using faecal microbiota transplantation (FMT). We found that NCDs seniors had low EEG power spectral density and identified specific microbiota, including Ruminococcus gnavus, Enterocloster bolteae, Lachnoclostridium sp. YL 32, and metabolites, including L-tryptophan, L-glutamic acid, gamma-aminobutyric acid (GABA), and fatty acid esters of hydroxy fatty acids (FAHFAs), as well as disturbed biosynthesis of aromatic amino acids and TCA cycle dysfunction, validated in aged mice. Finally, we employed a support vector machine (SVM) algorithm to construct a machine learning model to classify NA and NCDs groups based on the fusion of EEG data and multi-omics profiles and the model demonstrated 92.69% accuracy in classifying NA and NCDs groups. Conclusions Our study highlights the potential of multi-omics profiling and EEG data fusion in personalized diagnosis of NCDs, with the potential to improve diagnostic precision and provide insights into the underlying mechanisms of NCDs.

Funder

Science and Technology Development Fund, Macau SAR

University of Macau

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3