A remarkably diverse and well-organized virus community in a filter-feeding oyster

Author:

Jiang Jing-Zhe,Fang Yi-Fei,Wei Hong-Ying,Zhu Peng,Liu Min,Yuan Wen-Guang,Yang Li-Ling,Guo Ying-Xiang,Jin Tao,Shi Mang,Yao Tuo,Lu Jie,Ye Ling-Tong,Shi Shao-Kun,Wang Meng,Duan Ming,Zhang Dian-Chang

Abstract

AbstractBackgroundViruses play critical roles in the marine environment because of their interactions with an extremely broad range of potential hosts. Many studies of viruses in seawater have been published, but viruses that inhabit marine animals have been largely neglected. Oysters are keystone species in coastal ecosystems, yet as filter-feeding bivalves with very large roosting numbers and species co-habitation, it is not clear what role they play in marine virus transmission and coastal microbiome regulation.ResultsHere, we report a Dataset of Oyster Virome (DOV) that contains 728,784 nonredundant viral operational taxonomic unit contigs (≥ 800 bp) and 3473 high-quality viral genomes, enabling the first comprehensive overview of both DNA and RNA viral communities in the oysterCrassostrea hongkongensis. We discovered tremendous diversity among novel viruses that inhabit this oyster using multiple approaches, including reads recruitment, viral operational taxonomic units, and high-quality virus genomes. Our results show that these viruses are very different from viruses in the oceans or other habitats. In particular, the high diversity of novel circoviruses that we found in the oysters indicates that oysters may be potential hotspots for circoviruses. Notably, the viruses that were enriched in oysters are not random but are well-organized communities that can respond to changes in the health state of the host and the external environment at both compositional and functional levels.ConclusionsIn this study, we generated a first “knowledge landscape” of the oyster virome, which has increased the number of known oyster-related viruses by tens of thousands. Our results suggest that oysters provide a unique habitat that is different from that of seawater, and highlight the importance of filter-feeding bivalves for marine virus exploration as well as their essential but still invisible roles in regulating marine ecosystems.

Funder

Natural Science Foundation of China

Central Public-Interest Scientific Institution Basal Research Fund, CAFS

Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams

Key-Area Research and Development Program of Guangdong Province

Earmarked Fund

Financial Fund of the Ministry of Agriculture and Rural Affairs, P. R. of China

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3