Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses

Author:

Nobu Masaru K.,Narihiro Takashi,Mei Ran,Kamagata Yoichi,Lee Patrick K. H.,Lee Po-Heng,McInerney Michael J.,Liu Wen-TsoORCID

Abstract

Abstract Background Current understanding of the carbon cycle in methanogenic environments involves trophic interactions such as interspecies H2 transfer between organotrophs and methanogens. However, many metabolic processes are thermodynamically sensitive to H2 accumulation and can be inhibited by H2 produced from co-occurring metabolisms. Strategies for driving thermodynamically competing metabolisms in methanogenic environments remain unexplored. Results To uncover how anaerobes combat this H2 conflict in situ, we employ metagenomics and metatranscriptomics to revisit a model ecosystem that has inspired many foundational discoveries in anaerobic ecology—methanogenic bioreactors. Through analysis of 17 anaerobic digesters, we recovered 1343 high-quality metagenome-assembled genomes and corresponding gene expression profiles for uncultured lineages spanning 66 phyla and reconstructed their metabolic capacities. We discovered that diverse uncultured populations can drive H2-sensitive metabolisms through (i) metabolic coupling with concurrent H2-tolerant catabolism, (ii) forgoing H2 generation in favor of interspecies transfer of formate and electrons (cytochrome- and pili-mediated) to avoid thermodynamic conflict, and (iii) integration of low-concentration O2 metabolism as an ancillary thermodynamics-enhancing electron sink. Archaeal populations support these processes through unique methanogenic metabolisms—highly favorable H2 oxidation driven by methyl-reducing methanogenesis and tripartite uptake of formate, electrons, and acetate. Conclusion Integration of omics and eco-thermodynamics revealed overlooked behavior and interactions of uncultured organisms, including coupling favorable and unfavorable metabolisms, shifting from H2 to formate transfer, respiring low-concentration O2, performing direct interspecies electron transfer, and interacting with high H2-affinity methanogenesis. These findings shed light on how microorganisms overcome a critical obstacle in methanogenic carbon cycles we had hitherto disregarded and provide foundational insight into anaerobic microbial ecology.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3