Constraining PERMANOVA and LDM to within-set comparisons by projection improves the efficiency of analyses of matched sets of microbiome data

Author:

Zhu Zhengyi,Satten Glen A.,Mitchell Caroline,Hu Yi-JuanORCID

Abstract

Abstract Background Matched-set data arise frequently in microbiome studies. For example, we may collect pre- and post-treatment samples from a set of individuals, or use important confounding variables to match data from case participants to one or more control participants. Thus, there is a need for statistical methods for data comprised of matched sets, to test hypotheses against traits of interest (e.g., clinical outcomes or environmental factors) at the community level and/or the operational taxonomic unit (OTU) level. Optimally, these methods should accommodate complex data such as those with unequal sample sizes across sets, confounders varying within sets, and continuous traits of interest. Methods PERMANOVA is a commonly used distance-based method for testing hypotheses at the community level. We have also developed the linear decomposition model (LDM) that unifies the community-level and OTU-level tests into one framework. Here we present a new strategy that can be used with both PERMANOVA and the LDM for analyzing matched-set data. We propose to include an indicator variable for each set as covariates, so as to constrain comparisons between samples within a set, and also permute traits within each set, which can account for exchangeable sample correlations. The flexible nature of PERMANOVA and the LDM allows discrete or continuous traits or interactions to be tested, within-set confounders to be adjusted, and unbalanced data to be fully exploited. Results Our simulations indicate that our proposed strategy outperformed alternative strategies, including the commonly used one that utilizes restricted permutation only, in a wide range of scenarios. Using simulation, we also explored optimal designs for matched-set studies. The flexibility of PERMANOVA and the LDM for a variety of matched-set microbiome data is illustrated by the analysis of data from two real studies. Conclusions Including set indicator variables and permuting within sets when analyzing matched-set data with PERMANOVA or the LDM is a strategy that performs well and is capable of handling the complex data structures that frequently occur in microbiome studies.

Funder

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3