Author:
He Baokun,Liu Yuying,Hoang Thomas K.,Tian Xiangjun,Taylor Christopher M.,Luo Meng,Tran Dat Q.,Tatevian Nina,Rhoads J. Marc
Abstract
Abstract
Background
Regulatory T cell (Treg) deficiency leads to IPEX syndrome, a lethal autoimmune disease, in Human and mice. Dysbiosis of the gut microbiota in Treg-deficient scurfy (SF) mice has been described, but to date, the role of the gut microbiota remains to be determined.
Results
To examine how antibiotic-modified microbiota can inhibit Treg deficiency-induced lethal inflammation in SF mice, Treg-deficient SF mice were treated with three different antibiotics. Different antibiotics resulted in distinct microbiota and metabolome changes and led to varied efficacy in prolonging lifespan and reducing inflammation in the liver and lung. Moreover, antibiotics altered plasma levels of several cytokines, especially IL-6. By analyzing gut microbiota and metabolome, we determined the microbial and metabolomic signatures which were associated with the antibiotics. Remarkably, antibiotic treatments restored the levels of several primary and secondary bile acids, which significantly reduced IL-6 expression in RAW macrophages in vitro. IL-6 blockade prolonged lifespan and inhibited inflammation in the liver and lung. By using IL-6 knockout mice, we further identified that IL-6 deletion provided a significant portion of the protection against inflammation induced by Treg dysfunction.
Conclusion
Our results show that three antibiotics differentially prolong survival and inhibit lethal inflammation in association with a microbiota—IL-6 axis. This pathway presents a potential avenue for treating Treg deficiency-mediated autoimmune disorders.
Funder
NIH
Shanghai General Hospital
Texas Medical Center Digestive Diseases Center
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献