Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress

Author:

Huang Dan,Yu PingfengORCID,Ye Mao,Schwarz Cory,Jiang Xin,Alvarez Pedro J. J.

Abstract

Abstract Background Microbe–virus interactions have broad implications on the composition, function, and evolution of microbiomes. Elucidating the effects of environmental stresses on these interactions is critical to identify the ecological function of viral communities and understand microbiome environmental adaptation. Heavy metal-contaminated soils represent a relevant ecosystem to study the interplay between microbes, viruses, and environmental stressors. Results Metagenomic analysis revealed that Cr pollution adversely altered the abundance, diversity, and composition of viral and bacterial communities. Host–phage linkage based on CRISPR indicated that, in soils with high Cr contamination, the abundance of phages associated with heavy metal-tolerant hosts increased, as did the relative abundance of phages with broad host ranges (identified as host–phage linkages across genera), which would facilitate transfection and broader distribution of heavy metal resistance genes in the bacterial community. Examining variations along the pollutant gradient, enhanced mutualistic phage–bacterium interactions were observed in the face of greater environmental stresses. Specifically, the fractions of lysogens in bacterial communities (identified by integrase genes within bacterial genomes and prophage induction assay by mitomycin-C) were positively correlated with Cr contamination levels. Furthermore, viral genomic analysis demonstrated that lysogenic phages under higher Cr-induced stresses carried more auxiliary metabolic genes regulating microbial heavy metal detoxification. Conclusion With the intensification of Cr-induced environmental stresses, the composition, replication strategy, and ecological function of the phage community all evolve alongside the bacterial community to adapt to extreme habitats. These result in a transformation of the phage–bacterium interaction from parasitism to mutualism in extreme environments and underscore the influential role of phages in bacterial adaptation to pollution-related stress and in related biogeochemical processes.

Funder

National Basic Research Program of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

NSF ERC on Nanotechnology-Enabled Water Treatment

Natural Science Foundation of Jiangsu Province (CN) for Distinguished Scholar

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3