Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse

Author:

van de Wouw Marcel,Walsh Aaron M.,Crispie Fiona,van Leuven Lucas,Lyte Joshua M.,Boehme Marcus,Clarke Gerard,Dinan Timothy G.,Cotter Paul D.,Cryan John F.ORCID

Abstract

Abstract Background Mounting evidence suggests a role for the gut microbiota in modulating brain physiology and behaviour, through bi-directional communication, along the gut-brain axis. As such, the gut microbiota represents a potential therapeutic target for influencing centrally mediated events and host behaviour. It is thus notable that the fermented milk beverage kefir has recently been shown to modulate the composition of the gut microbiota in mice. It is unclear whether kefirs have differential effects on microbiota-gut-brain axis and whether they can modulate host behaviour per se. Methods To address this, two distinct kefirs (Fr1 and UK4), or unfermented milk control, were administered to mice that underwent a battery of tests to characterise their behavioural phenotype. In addition, shotgun metagenomic sequencing of ileal, caecal and faecal matter was performed, as was faecal metabolome analysis. Finally, systemic immunity measures and gut serotonin levels were assessed. Statistical analyses were performed by ANOVA followed by Dunnett's post hoc test or Kruskal-Wallis test followed by Mann-Whitney U test. Results Fr1 ameliorated the stress-induced decrease in serotonergic signalling in the colon and reward-seeking behaviour in the saccharin preference test. On the other hand, UK4 decreased repetitive behaviour and ameliorated stress-induced deficits in reward-seeking behaviour. Furthermore, UK4 increased fear-dependent contextual memory, yet decreased milk gavage-induced improvements in long-term spatial learning. In the peripheral immune system, UK4 increased the prevalence of Treg cells and interleukin 10 levels, whereas Fr1 ameliorated the milk gavage stress-induced elevation in neutrophil levels and CXCL1 levels. Analysis of the gut microbiota revealed that both kefirs significantly changed the composition and functional capacity of the host microbiota, where specific bacterial species were changed in a kefir-dependent manner. Furthermore, both kefirs increased the capacity of the gut microbiota to produce GABA, which was linked to an increased prevalence in Lactobacillus reuteri. Conclusions Altogether, these data show that kefir can signal through the microbiota-gut-immune-brain axis and modulate host behaviour. In addition, different kefirs may direct the microbiota toward distinct immunological and behavioural modulatory effects. These results indicate that kefir can positively modulate specific aspects of the microbiota-gut-brain axis and support the broadening of the definition of psychobiotic to include kefir fermented foods.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3