An atlas of the tissue and blood metagenome in cancer reveals novel links between bacteria, viruses and cancer

Author:

Borchmann SvenORCID

Abstract

Abstract Background Host tissue infections by bacteria and viruses can cause cancer. Known viral carcinogenic mechanisms are disruption of the host genome via genomic integration and expression of oncogenic viral proteins. An important bacterial carcinogenic mechanism is chronic inflammation. Massively parallel sequencing now routinely generates datasets large enough to contain detectable traces of bacterial and viral nucleic acids of taxa that colonize the examined tissue or are integrated into the host genome. However, this hidden resource has not been comprehensively studied in large patient cohorts. Methods In the present study, 3025 whole genome sequencing datasets and, where available, corresponding RNA-seq datasets are leveraged to gain insight into novel links between viruses, bacteria, and cancer. Datasets were obtained from multiple International Cancer Genome Consortium studies, with additional controls added from the 1000 genome project. A customized pipeline based on KRAKEN was developed and validated to identify bacterial and viral sequences in the datasets. Raw results were stringently filtered to reduce false positives and remove likely contaminants. Results The resulting map confirms known links and expands current knowledge by identifying novel associations. Moreover, the detection of certain bacteria or viruses is associated with profound differences in patient and tumor phenotypes, such as patient age, tumor stage, survival, and somatic mutations in cancer genes or gene expression profiles. Conclusions Overall, these results provide a detailed, unprecedented map of links between viruses, bacteria, and cancer that can serve as a reference for future studies and further experimental validation.

Funder

Else Kröner-Fresenius-Stiftung

Deutsche Forschungsgemeinschaft

Frau Weiskam + Christel Ruranski-Stiftung

Universitätsklinikum Köln

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3