Author:
Wang Guobao,Yin Xiuran,Feng Zekai,Chen Chiyu,Chen Daijie,Wu Bo,Liu Chong,Morel Jean Louis,Jiang Yuanyuan,Yu Hang,He Huan,Chao Yuanqing,Tang Yetao,Qiu Rongliang,Wang Shizhong
Abstract
Abstract
Background
Understanding the ecological and environmental functions of phototrophic biofilms in the biological crust is crucial for improving metal(loid) (e.g. Cd, As) bioremediation in mining ecosystems. In this study, in combination with metal(loid) monitoring and metagenomic analysis, we systematically evaluated the effect of biofilm in a novel biological aqua crust (biogenic aqua crust—BAC) on in situ metal(loid) bioremediation of a representative Pb/Zn tailing pond.
Results
We observed strong accumulation of potentially bioavailable metal(loid)s and visible phototrophic biofilms in the BAC. Furthermore, dominating taxa Leptolyngbyaceae (10.2–10.4%, Cyanobacteria) and Cytophagales (12.3–22.1%, Bacteroidota) were enriched in biofilm. Along with predominant heterotrophs (e.g. Cytophagales sp.) as well as diazotrophs (e.g. Hyphomonadaceae sp.), autotrophs/diazotrophs (e.g. Leptolyngbyaceae sp.) in phototrophic biofilm enriched the genes encoding extracellular peptidase (e.g. family S9, S1), CAZymes (e.g. CBM50, GT2) and biofilm formation (e.g. OmpR, CRP and LuxS), thus enhancing the capacity of nutrient accumulation and metal(loid) bioremediation in BAC system.
Conclusions
Our study demonstrated that a phototrophic/diazotrophic biofilm constitutes the structured communities containing specific autotrophs (e.g. Leptolyngbyaceae sp.) and heterotrophs (e.g. Cytophagales sp.), which effectively control metal(loid) and nutrient input using solar energy in aquatic environments. Elucidation of the mechanisms of biofilm formation coupled with metal(loid) immobilization in BAC expands the fundamental understanding of the geochemical fate of metal(loid)s, which may be harnessed to enhance in situ metal(loid) bioremediation in the aquatic ecosystem of the mining area.
Funder
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
National Natural Science Foundation of China
The 111 Project of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献