Integration of spatio-temporal variations of surface metabolomes and epibacterial communities highlights the importance of copper stress as a major factor shaping host-microbiota interactions within a Mediterranean seaweed holobiont

Author:

Paix Benoît,Layglon Nicolas,Le Poupon Christophe,D’Onofrio Sébastien,Misson Benjamin,Garnier Cédric,Culioli Gérald,Briand Jean-FrançoisORCID

Abstract

Abstract Background Although considered as holobionts, macroalgae and their surface microbiota share intimate interactions that are still poorly understood. Little is known on the effect of environmental parameters on the close relationships between the host and its surface-associated microbiota, and even more in a context of coastal pollutions. Therefore, the main objective of this study was to decipher the impact of local environmental parameters, especially trace metal concentrations, on an algal holobiont dynamics using the Phaeophyta Taonia atomaria as a model. Through a multidisciplinary multi-omics approach combining metabarcoding and untargeted LC-MS-based metabolomics, the epibacterial communities and the surface metabolome of T. atomaria were monitored along a spatio-temporal gradient in the bay of Toulon (Northwestern Mediterranean coast) and its surrounding. Indeed, this geographical area displays a well-described trace metal gradient particularly relevant to investigate the effect of such pollutants on marine organisms. Results Epibacterial communities of T. atomaria exhibited a high specificity whatever the five environmentally contrasted collecting sites investigated on the NW Mediterranean coast. By integrating metabarcoding and metabolomics analyses, the holobiont dynamics varied as a whole. During the occurrence period of T. atomaria, epibacterial densities and α-diversity increased while the relative proportion of core communities decreased. Pioneer bacterial colonizers constituted a large part of the specific and core taxa, and their decrease might be linked to biofilm maturation through time. Then, the temporal increase of the Roseobacter was proposed to result from the higher temperature conditions, but also the increased production of dimethylsulfoniopropionate (DMSP) at the algal surface which could constitute of the source of carbon and sulfur for the catabolism pathways of these taxa. Finally, as a major result of this study, copper concentration constituted a key factor shaping the holobiont system. Thus, the higher expression of carotenoids suggested an oxidative stress which might result from an adaptation of the algal surface metabolome to high copper levels. In turn, this change in the surface metabolome composition could result in the selection of particular epibacterial taxa. Conclusion We showed that associated epibacterial communities were highly specific to the algal host and that the holobiont dynamics varied as a whole. While temperature increase was confirmed to be one of the main parameters associated to Taonia dynamics, the originality of this study was highlighting copper-stress as a major driver of seaweed-epibacterial interactions. In a context of global change, this study brought new insights on the dynamics of a Mediterranean algal holobiont submitted to heavy anthropic pressures.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3