An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung

Author:

Klein Sebastian G,Serchi Tommaso,Hoffmann Lucien,Blömeke Brunhilde,Gutleb Arno C

Abstract

Abstract Background Exposure to fine and ultra-fine ambient particles is still a problem of concern in many industrialised parts of the world and the intensified use of nanotechnology may further increase exposure to small particles. Complex in vitro coculture systems may be valuable tools to study particle-induced processes and to extrapolate effects of particles on the lung. A system consisting of four different human cell lines which mimics the cell response of the alveolar surface in vitro was developed to study native aerosol exposure (Vitrocell™ chamber). The system is composed of an alveolar type-II cell line (A549), differentiated macrophage-like cells (THP-1), mast cells (HMC-1) and endothelial cells (EA.hy 926), seeded in a 3D-orientation on a microporous membrane. Results The spatial distribution of the cells in the tetraculture was analysed by confocal laser scanning microscopy (CLSM), showing a confluent layer of endothelial and epithelial cells on both sides of the transwell. Macrophage-like cells and mast cells can be found on top of the epithelial cells. The cells formed colonies under submerged conditions, which disappeared at the ALI. To evaluate the response to oxidative stress, the dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used together with 2,2’-azobis-2-methyl-propanimidamide-dihydrochloride (AAPH) as inducer of oxidative stress. The tetraculture showed less induction of reactive oxygen species (ROS) production after being treated with a positive control compared to the monocultures of EA.hy 926, THP-1 and HMC-1. Submerged cultures showed elevated ROS and IL-8 levels compared to ALI cultures. The Vitrocell™ aerosol exposure system was not significantly influencing the viability. Using this system, cells were exposed to an aerosol of 50 nm SiO2-Rhodamine NPs in PBS. The distribution of the NPs in the tetraculture after exposure was evaluated by CLSM. Fluorescence from internalized particles was detected in CD11b-positive THP-1 cells only. Conclusion The system can be used in conjunction with a native aerosol exposure system and may finally lead to a more realistic judgement regarding the hazard of new compounds and/or new nano-scaled materials in the future. The results for the ROS production and IL-8 secretion suggest that submerged exposure may lead to an overestimation of observed effects.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3