Relationship between redox activity and chemical speciation of size-fractionated particulate matter
-
Published:2007-06-07
Issue:1
Volume:4
Page:
-
ISSN:1743-8977
-
Container-title:Particle and Fibre Toxicology
-
language:en
-
Short-container-title:Part Fibre Toxicol
Author:
Ntziachristos Leonidas,Froines John R,Cho Arthur K,Sioutas Constantinos
Abstract
Abstract
Background
Although the mechanisms of airborne particulate matter (PM) related health effects remain incompletely understood, one emerging hypothesis is that these adverse effects derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. Typically, ROS are formed in cells through the reduction of oxygen by biological reducing agents, with the catalytic assistance of electron transfer enzymes and redox active chemical species such as redox active organic chemicals and metals. The purpose of this study was to relate the electron transfer ability, or redox activity, of the PM samples to their content in polycyclic aromatic hydrocarbons and various inorganic species. The redox activity of the samples has been shown to correlate with the induction of the stress protein, hemeoxygenase-1.
Results
Size-fractionated (i.e. < 0.15; < 2.5 and 2.5 – 10 μm in diameter) ambient PM samples were collected from four different locations in the period from June 2003 to July 2005, and were chemically analyzed for elemental and organic carbon, ions, elements and trace metals and polycyclic aromatic hydrocarbons. The redox activity of the samples was evaluated by means of the dithiothreitol activity assay and was related to their chemical speciation by means of correlation analysis. Our analysis indicated a higher redox activity on a per PM mass basis for ultrafine (< 0.15 μm) particles compared to those of larger sizes. The PM redox activity was highly correlated with the organic carbon (OC) content of PM as well as the mass fractions of species such as polycyclic aromatic hydrocarbons (PAH), and selected metals.
Conclusion
The results of this work demonstrate the utility of the dithiothreitol assay for quantitatively assessing the redox potential of airborne particulate matter from a wide range of sources. Studies to characterize the redox activity of PM from various sources throughout the Los Angeles basin are currently underway.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference45 articles.
1. Lippmann M, Frampton M, Schwartz J, Dockery D, Schlesinger R, Koutrakis P, Froines J, Nel A, Finkelstein J, Godleski J, Kaufman J, Koenig J, Larson T, Luchtel D, Liu L-JS, Oberdörster G, Peters A, Sarnat J, Sioutas C, Suh H, Sullivan J, Utell M, Wichmann E, Zelikoff J: The US Environmental Protection Agency particulate matter health effects research centers program: A midcourse report of status, progress, and plans. Environ Health Persp 2003, 111: 1074–1092. 2. Peters A, Dockery DW, Muller JE, Mittleman MA: Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001, 103: 2810–2815. 3. Pope CA, Burnett RT, Thun M, Calle EE, Krewski D, Ito K, Thurston GD: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Amer Med Assoc 2002, 287: 1132–1141. 10.1001/jama.287.9.1132 4. Ritz B, Yu F, Fruin S, Chapa G, Shaw GM, Harris JA: Ambient air pollution and risk of birth defects in southern California. Am J Epidemiol 2002, 155: 17–25. 10.1093/aje/155.1.17 5. Li N, Sioutas C, Cho AK, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A: Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Persp 2003, 111: 455–460.
Cited by
217 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|