Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology

Author:

Hamilton Raymond F,Wu Zheqiong,Mitra Somenath,Shaw Pamela K,Holian Andrij

Abstract

Abstract Background Several properties of multi-walled carbon nanotubes (MWCNT) have the potential to affect their bioactivity. This study examined the in vitro and in vivo outcomes of the influence of diameter, length, purification and carboxylation (in vitro testing only) of MWCNT. Methods Three original ‘as received’ MWCNT that varied in size (diameter and length) were purified and functionalized by carboxylation. The resulting MWCNT were characterized and examined for cytotoxicity and inflammasome activation in vitro using THP-1 cells and primary alveolar macrophages from C57BL/6 mice. Oropharyngeal aspiration administration was used to deliver original MWCNT and in vivo bioactivity and lung retention was examined at 1 and 7 days. Results Studies with THP-1 macrophages demonstrated that increased length or diameter corresponded with increased bioactivity as measured by inflammasome activation. Purification had little effect on the original MWCNT, and functionalization completely eliminated bioactivity. Similar results were obtained using alveolar macrophages isolated from C57BL/6 mice. The in vivo studies demonstrated that all three original MWCNT caused similar neutrophil influx at one day, but increasing length or diameter resulted in the lavaged cells to release more inflammatory cytokines (IL-6, TNF-α, and IL-1β) ex vivo. Seven-day histology revealed that, consistent with the in vitro results, increasing width or length of MWCNT caused more severe pathology with the longest MWCNT causing the most severe inflammation. In addition, the same two larger MWCNT were retained more in the lung at 7 days. Conclusions Taken together, the results indicated that in vitro and in vivo bioactivity of MWCNT increased with diameter and length. Purification had no significant modifying effect from the original MWCNT. Functionalization by carboxylation completely eliminated the bioactive potential of the MWCNT regardless of size in in vitro testing.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3