Author:
Lee Ji Hyun,Kim Yong Soon,Song Kyung Seuk,Ryu Hyun Ryol,Sung Jae Hyuck,Park Jung Duck,Park Hyun Min,Song Nam Woong,Shin Beom Soo,Marshak Daniel,Ahn Kangho,Lee Ji Eun,Yu Il Je
Abstract
Abstract
Silver nanoparticles are known to be distributed in many tissues after oral or inhalation exposure. Thus, understanding the tissue clearance of such distributed nanoparticles is very important to understand the behavior of silver nanoparticles in vivo. For risk assessment purposes, easy clearance indicates a lower overall cumulative toxicity. Accordingly, to investigate the clearance of tissue silver concentrations following oral silver nanoparticle exposure, Sprague–Dawley rats were assigned to 3 groups: control, low dose (100 mg/kg body weight), and high dose (500 mg/kg body weight), and exposed to two different sizes of silver nanoparticles (average diameter 10 and 25 nm) over 28 days. Thereafter, the rats were allowed to recover for 4 months. Regardless of the silver nanoparticle size, the silver content in most tissues gradually decreased during the 4-month recovery period, indicating tissue clearance of the accumulated silver. The exceptions were the silver concentrations in the brain and testes, which did not clear well, even after the 4-month recovery period, indicating an obstruction in transporting the accumulated silver out of these tissues. Therefore, the results showed that the size of the silver nanoparticles did not affect their tissue distribution. Furthermore, biological barriers, such as the blood–brain barrier and blood-testis barrier, seemed to play an important role in the silver clearance from these tissues.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference20 articles.
1. Woodrow Wilson International Center for Scholars: Project on emerging nanotechnologies, inventory of nanotechnology-based consumer products. 2009. Retrieved March 01, 2009 from http://www.nanotechproject.org/inventories/consumer/
2. Chen X, Schluesener HJ: Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008,176(1):1–12. 10.1016/j.toxlet.2007.10.004
3. Samuel U, Guggenbichler JP: Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 2004, 23: 75–78.
4. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ, 6: Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 2008, 20: 575–583. 10.1080/08958370701874663
5. Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ: Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 2010, 7: 20. 10.1186/1743-8977-7-20
Cited by
210 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献