Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms

Author:

Depren ÖzerORCID,Kartal Mustafa TevfikORCID,Kılıç Depren SerpilORCID

Abstract

AbstractSome countries have announced national benchmark rates, while others have been working on the recent trend in which the London Interbank Offered Rate will be retired at the end of 2021. Considering that Turkey announced the Turkish Lira Overnight Reference Interest Rate (TLREF), this study examines the determinants of TLREF. In this context, three global determinants, five country-level macroeconomic determinants, and the COVID-19 pandemic are considered by using daily data between December 28, 2018, and December 31, 2020, by performing machine learning algorithms and Ordinary Least Square. The empirical results show that (1) the most significant determinant is the amount of securities bought by Central Banks; (2) country-level macroeconomic factors have a higher impact whereas global factors are less important, and the pandemic does not have a significant effect; (3) Random Forest is the most accurate prediction model. Taking action by considering the study’s findings can help support economic growth by achieving low-level benchmark rates.

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Finance

Reference71 articles.

1. Akkaya M (2018) Türk Lirası Referans Faiz Oranını (TRLIBOR) etkileyen makroekonomik faktörlerin analizi. Çankırı Karatekin Üniversitesi İİBF Dergisi 8(2):179–197

2. Alexander C, Kaeck A (2008) Regime dependent determinants of credit default swap spreads. J Bank Finance 32(6):1008–1021

3. BIS (2021) Beyond LIBOR: a primer on the new reference rates. https://www.bis.org/publ/qtrpdf/r_qt1903e.pdf. Accessed 16 Jan 2021

4. BIST (2021a) TLREF. https://www.borsaistanbul.com/en/data/data/tlref-data. Accessed 16 Jan 2021

5. BIST (2021b) Data. https://www.borsaistanbul.com/veriler. Accessed 16 Jan 2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3