Discovering optimal weights in weighted-scoring stock-picking models: a mixture design approach

Author:

Yeh I-ChengORCID,Liu Yi-Cheng

Abstract

AbstractCertain literature that constructs a multifactor stock selection model adopted a weighted-scoring approach despite its three shortcomings. First, it cannot effectively identify the connection between the weights of stock-picking concepts and portfolio performances. Second, it cannot provide stock-picking concepts’ optimal combination of weights. Third, it cannot meet various investor preferences. Thus, this study employs a mixture experimental design to determine the weights of stock-picking concepts, collect portfolio performance data, and construct performance prediction models based on the weights of stock-picking concepts. Furthermore, these performance prediction models and optimization techniques are employed to discover stock-picking concepts’ optimal combination of weights that meet investor preferences. The samples consist of stocks listed on the Taiwan stock market. The modeling and testing periods were 1997–2008 and 2009–2015, respectively. Empirical evidence showed (1) that our methodology is robust in predicting performance accurately, (2) that it can identify significant interactions between stock-picking concepts’ weights, and (3) that which their optimal combination should be. This combination of weights can form stock portfolios with the best performances that can meet investor preferences. Thus, our methodology can fill the three drawbacks of the classical weighted-scoring approach.

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Finance

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A closed form formula for equity valuation model based on differential equation;OPSEARCH;2024-08-12

2. Is Investment Portfolio Construction Sustainable in the Circular Economy Paradigm—The Case of ESG Investment?;Lecture Notes in Management and Industrial Engineering;2023

3. Synergy frontier of multi-factor stock selection model;OPSEARCH;2022-12-19

4. Analysis of New Approaches Used in Portfolio Optimization: A Systematic Literature Review;Adaptation, Learning, and Optimization;2021-11-14

5. Portfolio Models Based on Fundamental Analysis Using Learning to Rank;Proceedings of the Fifteenth International Conference on Management Science and Engineering Management;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3