Abstract
AbstractThe new energy industry is strongly supported by the state, and accurate forecasting of stock price can lead to better understanding of its development. However, factors such as cost and ease of use of new energy, as well as economic situation and policy environment, have led to continuous changes in its stock price and increased stock price volatility. By calculating the Lyapunov index and observing the Poincaré surface of the section, we find that the sample of the China Securities Index Green Power 50 Index has chaotic characteristics, and the data indicate strong volatility and uncertainty. This study proposes a new method of stock price index prediction, namely, EWT-S-ALOSVR. Empirical wavelet decomposition extracts features from multiple factors affecting stock prices to form multiple sub-columns with features, significantly reducing the complexity of the stock price series. Support vector regression is well suited for dealing with nonlinear stock price series, and the support vector machine model parameters are selected using random wandering and picking elites via Ant Lion Optimization, making stock price prediction more accurate.
Funder
Science and Technology of Henan Province of China
Foundation for Fostering the National Foundation of Pingdingshan University
National Science and Technology Council
Key Research Project in Universities of Henan Province
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献