Abstract
AbstractForex (foreign exchange) is a special financial market that entails both high risks and high profit opportunities for traders. It is also a very simple market since traders can profit by just predicting the direction of the exchange rate between two currencies. However, incorrect predictions in Forex may cause much higher losses than in other typical financial markets.
The direction prediction requirement makes the problem quite different from other typical time-series forecasting problems. In this work, we used a popular deep learning tool called “long short-term memory” (LSTM), which has been shown to be very effective in many time-series forecasting problems, to make direction predictions in Forex. We utilized two different data sets—namely, macroeconomic data and technical indicator data—since in the financial world, fundamental and technical analysis are two main techniques, and they use those two data sets, respectively. Our proposed hybrid model, which combines two separate LSTMs corresponding to these two data sets, was found to be quite successful in experiments using real data.
Publisher
Springer Science and Business Media LLC
Subject
Management of Technology and Innovation,Finance
Reference68 articles.
1. Appel G (2005) Technical analysis: power tools for active investors. Financial Times Prentice Hall, p 241. http://www.ncbi.nlm.nih.gov/pubmed/15003161
2. Archer MD (2010) Getting started in currency trading: winning in today’s Forex market. Wiley, London, p 333
3. Bahrammirzaee A (2010) A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput Appl 19:1165–1195
4. Ballings M, Van Den Poel D, Hespeels N, Gryp R (2015) Evaluating multiple classifiers for stock price direction prediction. Expert Syst Appl 42:7046–7056
5. Biehl M (2005) Supervised sequence labelling with recurrent neural neural networks. Neural Netw 1999:1
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献