Abstract
AbstractThe explosion of online information with the recent advent of digital technology in information processing, information storing, information sharing, natural language processing, and text mining techniques has enabled stock investors to uncover market movement and volatility from heterogeneous content. For example, a typical stock market investor reads the news, explores market sentiment, and analyzes technical details in order to make a sound decision prior to purchasing or selling a particular company’s stock. However, capturing a dynamic stock market trend is challenging owing to high fluctuation and the non-stationary nature of the stock market. Although existing studies have attempted to enhance stock prediction, few have provided a complete decision-support system for investors to retrieve real-time data from multiple sources and extract insightful information for sound decision-making. To address the above challenge, we propose a unified solution for data collection, analysis, and visualization in real-time stock market prediction to retrieve and process relevant financial data from news articles, social media, and company technical information. We aim to provide not only useful information for stock investors but also meaningful visualization that enables investors to effectively interpret storyline events affecting stock prices. Specifically, we utilize an ensemble stacking of diversified machine-learning-based estimators and innovative contextual feature engineering to predict the next day’s stock prices. Experiment results show that our proposed stock forecasting method outperforms a traditional baseline with an average mean absolute percentage error of 0.93. Our findings confirm that leveraging an ensemble scheme of machine learning methods with contextual information improves stock prediction performance. Finally, our study could be further extended to a wide variety of innovative financial applications that seek to incorporate external insight from contextual information such as large-scale online news articles and social media data.
Publisher
Springer Science and Business Media LLC
Subject
Management of Technology and Innovation,Finance
Reference44 articles.
1. Afzali M, Kumar S (2019) Text document clustering: issues and challenges. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEE, pp 263–268
2. Akhtar MS, Gupta D, Ekbal A, Bhattacharyya P (2017) Feature selection and ensemble construction: a two-step method for aspect based sentiment analysis. Knowl Based Syst 125(Supplement C):116–135 (ISSN 0950-7051)
3. Alhassan J, Abdullahi M, Lawal J (2014) Application of artificial neural network to stock forecasting-comparison with ses and arima. J Comput Model 4(2):179–190
4. Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Exp Syst Appl 77(Supplement C):236–246 (ISSN 0957-4174)
5. Blei DM, Ng AY, Jordan MI (2003a) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993–1022
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献