Deterministic modelling of implied volatility in cryptocurrency options with underlying multiple resolution momentum indicator and non-linear machine learning regression algorithm

Author:

Leung F.,Law M.,Djeng S. K.

Abstract

AbstractModeling implied volatility (IV) is important for option pricing, hedging, and risk management. Previous studies of deterministic implied volatility functions (DIVFs) propose two parameters, moneyness and time to maturity, to estimate implied volatility. Recent DIVF models have included factors such as a moving average ratio and relative bid-ask spread but fail to enhance modeling accuracy. The current study offers a generalized DIVF model by including a momentum indicator for the underlying asset using a relative strength index (RSI) covering multiple time resolutions as a factor, as momentum is often used by investors and speculators in their trading decisions, and in contrast to volatility, RSI can distinguish between bull and bear markets. To the best of our knowledge, prior studies have not included RSI as a predictive factor in modeling IV. Instead of using a simple linear regression as in previous studies, we use a machine learning regression algorithm, namely random forest, to model a nonlinear IV. Previous studies apply DVIF modeling to options on traditional financial assets, such as stock and foreign exchange markets. Here, we study options on the largest cryptocurrency, Bitcoin, which poses greater modeling challenges due to its extreme volatility and the fact that it is not as well studied as traditional financial assets. Recent Bitcoin option chain data were collected from a leading cryptocurrency option exchange over a four-month period for model development and validation. Our dataset includes short-maturity options with expiry in less than six days, as well as a full range of moneyness, both of which are often excluded in existing studies as prices for options with these characteristics are often highly volatile and pose challenges to model building. Our in-sample and out-sample results indicate that including our proposed momentum indicator significantly enhances the model’s accuracy in pricing options. The nonlinear machine learning random forest algorithm also performed better than a simple linear regression. Compared to prevailing option pricing models that employ stochastic variables, our DIVF model does not include stochastic factors but exhibits reasonably good performance. It is also easy to compute due to the availability of real-time RSIs. Our findings indicate our enhanced DIVF model offers significant improvements and may be an excellent alternative to existing option pricing models that are primarily stochastic in nature.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3