Elitist-opposition-based artificial electric field algorithm for higher-order neural network optimization and financial time series forecasting

Author:

Nayak Sarat ChandraORCID,Dehuri Satchidananda,Cho Sung-Bae

Abstract

AbstractThis study attempts to accelerate the learning ability of an artificial electric field algorithm (AEFA) by attributing it with two mechanisms: elitism and opposition-based learning. Elitism advances the convergence of the AEFA towards global optima by retaining the fine-tuned solutions obtained thus far, and opposition-based learning helps enhance its exploration ability. The new version of the AEFA, called elitist opposition leaning-based AEFA (EOAEFA), retains the properties of the basic AEFA while taking advantage of both elitism and opposition-based learning. Hence, the improved version attempts to reach optimum solutions by enabling the diversification of solutions with guaranteed convergence. Higher-order neural networks (HONNs) have single-layer adjustable parameters, fast learning, a robust fault tolerance, and good approximation ability compared with multilayer neural networks. They consider a higher order of input signals, increased the dimensionality of inputs through functional expansion and could thus discriminate between them. However, determining the number of expansion units in HONNs along with their associated parameters (i.e., weight and threshold) is a bottleneck in the design of such networks. Here, we used EOAEFA to design two HONNs, namely, a pi-sigma neural network and a functional link artificial neural network, called EOAEFA-PSNN and EOAEFA-FLN, respectively, in a fully automated manner. The proposed models were evaluated on financial time-series datasets, focusing on predicting four closing prices, four exchange rates, and three energy prices. Experiments, comparative studies, and statistical tests were conducted to establish the efficacy of the proposed approach.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3