Energetic particle precipitation in the Brazilian geomagnetic anomaly during the “Bastille Day storm” of July 2000

Author:

Nishino Masanori,Makita Kazuo,Yumoto Kiyofumi,Miyoshi Yoshizumi,Schuch Nelson J.,Abdu Mangalathayil A.

Abstract

Abstract Ionospheric absorption associated with a great geomagnetic storm on July 15–16, 2000 (the “Bastille Day storm”) was observed in the Brazilian geomagnetic anomaly using a two-dimensional 4 × 4 imaging riometer (IRIS). In the afternoon of July 15, weak absorption (≈0.2 dB) was observed during the initial phase of the storm; large spatial-scale absorption exceeded the IRIS field of view (330×330 km). During the sharp magnetic decrease in the main phase of the storm, absorption was intensified (<0.5 dB) in the evening, showing a sheet structure with ≈150 km latitudinal width and >330 km longitudinal elongation. Subsequently, absorption was intensified (≈1 dB), having a small spatial-scale (≈150 km) in the background sheet structure and a pronounced westward drift (≈570 m s-1). In association with large magnetic fluctuations in the Bz component of the interplanetary magnetic field (IMF), the ground magnetic variation in the night sector showed large positive swings during the initial to main phases of the storm. With the subsequent southward turning of the IMF Bz, the ground magnetic variation in the evening sector showed rapid storm development. Particle fluxes measured by a geosynchronous satellite (L =≈6.6) demonstrated large enhancements of low-energy protons (50–400 keV) and probably electrons (50–225 keV) during the storm’s initial phase. Particle fluxes from the low-altitude NOAA satellite (≈870 km) indicated the invasion of low-energy particles into the region of L < 2 during the main phase of the storm. These results indicate that low-energy particles injected into the outer radiation belt in association with frequent and strong substorm occurrences, were transported into the inner radiation belt through direct convective access by the storm-induced electric fields during the storm’s development. These particles then precipitated into the ionosphere over the Brazilian geomagnetic anomaly. Notably, the most intense absorption could be dominantly caused by proton precipitation with energies of ≈40 keV. Key words: Bastille Day storm, Brazilian geomagnetic anomaly, energetic particle precipitation, imaging riometer.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3