Author:
Bertino-Grimaldi Danielle,Medeiros Marcelo N,Vieira Ricardo P,Cardoso Alexander M,Turque Aline S,Silveira Cynthia B,Albano Rodolpho M,Bressan-Nascimento Suzete,Garcia Elói S,de Souza Wanderley,Martins Orlando B,Machado Ednildo A
Abstract
Abstract
Background
Cockroaches are omnivorous animals that can incorporate in their diets food of different composition, including lignocellulosic materials. Digestion of these compounds is achieved by the insect’s own enzymes and also by enzymes produced by gut symbiont. However, the influence of diet with different fiber contents on gut bacterial communities and how this affects the digestion of cockroaches is still unclear. The presence of some bacterial phyla on gut tract suggests that cockroaches could be an interesting model to study the organization of gut bacterial communities during digestion of different lignocellulosic diets. Knowledge about the changes in diversity of gut associated bacterial communities of insects exposed to such diets could give interesting insights on how to improve hemicellulose and cellulose breakdown systems.
Methodology/principal findings
We compared the phylogenetic diversity and composition of gut associated bacteria in the cockroach P. americana caught on the wild or kept on two different diets: sugarcane bagasse and crystalline cellulose. For this purpose we constructed bacterial 16S rRNA gene libraries which showed that a diet rich in cellulose and sugarcane bagasse favors the predominance of some bacterial phyla, more remarkably Firmicutes, when compared to wild cockroaches. Rarefaction analysis, LIBSHUFF and UniFrac PCA comparisons showed that gene libraries of wild insects were the most diverse, followed by sugarcane bagasse fed and then cellulose fed animals. It is also noteworthy that cellulose and sugarcane bagasse gene libraries resemble each other.
Conclusion/significance
Our data show a high bacterial diversity in P. americana gut, with communities composed mostly by the phyla Bacteroidetes, Firmicutes, Proteobacteria and Synergistetes. The composition and diversity of gut bacterial communities could be modulated by font of diet composition. The increased presence of Firmicutes in sugarcane bagasse and crystalline cellulose-fed animals suggests that these bacteria are strongly involved in lignocellulose digestion in cockroach guts.
Cockroaches are insects that can accommodate diets of different composition, including lignocellulosic materials. Digestion of these compounds is achieved by the insect’s own enzymes and also by enzymes produced by gut symbionts. The presence of different and modular bacterial phyla on the cockroach gut tract suggests that this insect could be an interesting model to study the organization of gut bacterial communities associated with the digestion of different lignocellulosic diets. Thus, changes in the diversity of gut associated bacterial communities of insects exposed to such diets could give useful insights on how to improve hemicellulose and cellulose breakdown systems. In this work, through sequence analysis of 16S rRNA clone libraries, we compared the phylogenetic diversity and composition of gut associated bacteria in the cockroach Periplaneta americana collected in the wild-types or kept on two different diets: sugarcane bagasse and crystalline cellulose. These high fiber diets favor the predominance of some bacterial phyla, such as Firmicutes, when compared to wild-types cockroaches. Our data show a high bacterial diversity in P. americana gut, with communities composed mostly by the phyla Bacteroidetes, Firmicutes, Proteobacteria and Synergistetes. Our data show that the composition and diversity of gut bacterial communities could be modulated by diet composition. The increased presence of Firmicutes in sugarcane bagasse and crystalline cellulose-fed animals suggests that these bacteria are strongly involved in lignocellulose digestion in cockroach guts.
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 5: 403-410.
2. Berlanga M, Bruce J, Paster BJ, Guerrero R: The taxophysiological paradox: changes in the intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the physiological state of the host. Intern Microbiol 2009, 12: 227-236. Doi: 10.2436/20.1501.01.102
3. Bignell DE: Some observations on the distribution of gut flora in the American cockroach periplaneta Americana. J Invert Pathol 1977, 29: 338-343.
4. Bignell DE: Nutrition and digestion. In The American Cockroach. Edited by: Bell WJ, Adiyodi KG. London and New York: Chapman and Hall; 1981:57-86.
5. Boucias DG, Cai Y, Sun Y, Lietze VU, Sen R, Raychoudhury R, Scharf ME: The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Molec Ecol 2013. doi: 10.1111/mec.12230
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献