Author:
Davidson Drew W,Verma Mohit S,Gu Frank X
Abstract
Abstract
Aims
The recent increases in food prices caused by the corresponding increases in fertilizer costs have highlighted the demand for reducing the overuse of fertilizers in industrial agriculture. There has been increasing interest in developing plant root-targeted delivery (RTD) of fertilizers in order to address the problem of inefficient fertilizer use. The aim of this study is to develop a low cost controlled release device to deliver fertilizers to plant roots and thereby increase fertilizer use efficiency.
Methods
The Root Targeted Delivery Vehicle (RTDV) is formed by dissolving Carboxymethyl Cellulose (CMC) chains in water, mixing it with liquid fertilizer and crosslinking using iron and calcium salts. Basic measurements quantifying nutrient release and green house growth trials were carried out to evaluate fertilizer use efficiency on wheat growing in nutrient depleted soil media.
Results
Growing wheat in nutrient depleted media showed that the RTDV permits a 78% reduction in the amount of fertilizer needed to achieve similar levels of plant yield in these conditions. Quantifying the losses associated with the RTDV synthesis showed that optimizing manufacturing could possibly increase this value as high as 94%. Furthermore, the delivery device showed a similar lifetime in soil to the plant’s growth cycle, delivering fertilizer over the course of the plant’s growth before removal from soil by degradation.
Conclusions
These results illustrate the importance of fertilizer delivery in facilitating absorption and may have potential to vastly increase the use efficiency of fertilizers in soil, resulting in a significant reduction of costs and environmental damage. With more in depth study to quantify the fertilizer release and refine the device, there is great potential for the use of the RTDV as an effective means to increase fertilizer use efficiency in agriculture.
Publisher
Springer Science and Business Media LLC
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献