An optical interferometric technique for assessing ozone induced damage and recovery under cumulative exposures for a Japanese rice cultivar

Author:

Thilakarathne Bodhipaksha Lalith Sanjaya,Rajagopalan Uma Maheswari,Kadono Hirofumi,Yonekura Tetsushi

Abstract

Abstract Exposure to ozone (O3) causes reduction both in the growth and yield of rice (Oriza sativa L.). Commonly used Chlorophyll fluorescent measurements are not sensitive enough for short term exposure of O3 aiming an immediate assessments. Such a conventional method typically needs exposure over a few days to detect the influence. As an alternative method, we proposed a novel non-invasive, robust, real-time, optical Statistical Interferometric Technique (SIT) to measure growth at an accuracy of 0.1 nm with a commonly consumed Japanese rice cultivar, Koshihikari. In the present study, we have conducted a repetitive O3 exposure experiment for three days under three different concentrations of 0 nl l-1 (control), 120 nl l-1, and 240 nl l-1, to investigate the damage and recovery strengths. As a measure to assess the effect and recovery from three consecutive day exposures of O3, we measured the elongation rate (nm mm-1 sec-1) every 5.5 sec for 7 hours, and it revealed nanometric elongation rate fluctuations or Nanometric Intrinsic Fluctuations (NIF). Comparing the standard deviation (SD) of normalized nanometric intrinsic fluctuations (NNIF), which was normalized by that before the exposure, we found that drastic reductions under both 120 nl l-1 and 240 nl l-1 O3 concentrations. Reduction percentages were large under high O3 concentration of 240 nl l-1 indicating the possibility of irreversible effect. However exposure to 120 nl l-1 of O3 showed recovery on the 2nd and 3rd days. While SIT did reveal immediate effect based on an observation for a few hours, the visible foliar effect could be observed only after a week. Hence, the technique could provide a way for fast assessment of effect and recovery due to cumulative exposure of O3 and hence the tolerance as well as the vitality of plant.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3