Nitric oxide pathway-mediated relaxant effect of aqueous sesame leaves extract (Sesamum radiatum Schum. & Thonn.) in the guinea-pig isolated aorta smooth muscle

Author:

Konan André B,Datté Jacques Y,Yapo Paul A

Abstract

Abstract Background Sesamum radiatum Schum. & Thonn. (Pedaliaceae) is an annual herbaceous plant, which belongs to the family Pedaliaceae and genus Sesamum. Sesame is used in traditional medicine in Africa and Asia for many diseases treatment. Sesame plant especially the leaves, seed and oil are consumed locally as a staple food by subsistence farmers. The study analyses the relaxation induced by the aqueous extract of leaves from sesame (ESera), compared with those of acetylcholine (ACh) in the guinea-pig aortic preparations (GPAPs), in order to confirm the use in traditional medicine for cardiovascular diseases. Methods The longitudinal strips of aorta of animals were rapidly removed from animals. The aorta was immediately placed in a Mac Ewen solution. Experiments were performed in preparations with intact endothelium as well as in aortae where the endothelium had been removed. The preparations were suspended between two L-shaped stainless steel hooks in a 10 ml organ bath with Mac Ewen solution. The isometric contractile force of the aorta strips of guinea-pig were recorded by using a strain gauge. All both drugs caused concentration-dependent relaxations responses. Results The aqueous extract of leaves from sesame ESera (1 × 10-7 – 0.1 μg/ml) caused a graded relaxation in GPAPs with intact endothelium, with a EC50-value of 1 × 10-4 μg/ml. The same effect was observed with ACh (7 × 10-2 nM – 7 × 10-1 μM), which caused relaxation in a concentration-dependent manner. The relaxation in response to ESera and, like that to ACh in GPAPs without endothelium, was fully abolished. Destruction of the endothelium or incubation with the nitric oxyde synthase inhibitor (L-NNA) significantly enhanced the inhibition of the relaxation response to ESera. Moreover, all concentrations induced vasoconstrictions. However, L-NNA produced a significant displacement to the right (about 65-fold) of the relaxation response to ESera. Similar results were obtained with ACh. Both diclofenac and tetra-ethyl-ammonium (TEA) pretreatment of GPAPs induced a suppression of the relaxation caused by ESera, and produced a very significant rightward shifts of the CRC (16-fold) for diclofenac and increase the Emax. In contract, the relaxation caused by ACh was not significantly affected by diclofenac or by TEA. Conclusion Thus, the present results indicate clearly that the nitric oxide largely contribute to the relaxation effect of Esera and of ACh in GPAPs. In addition, their contractile effects are also mediated by cyclooxygenase activation, and probably the K+ channels involvement, that confirm the use of various preparations of Esera for the treatments of cardiovascular diseases.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,General Medicine

Reference35 articles.

1. Gautier-Béguin D: Plantes de cueillette à utilisation alimentaire en Côte d'Ivoire Centrale. Boissiera. 1992, 46: 211-219.

2. Konan BA, Datté JY, Offoumou AM: Action of the aqueous extract of Sesamum radiatum Schum. & Thonn. (Pedaliaceae) on the cardiovascular system of mammalians: Hypotensive effect. Current Bioactive Compound. 2006, 2: 263-267.

3. Vanhoutte PM, Rubanyi GM, Miller VM, Houston DS: Modulation of vascular smooth muscle contractility by the endothelium. Ann Rev Physiol. 1986, 48: 307-320. 10.1146/annurev.ph.48.030186.001515.

4. Furchgott RF: Studies on relaxation of rabbit aorta by sodium nitrite: the basis for proposal that the acid-activable inhitory factor from bovine retractor penis is inorganic nitrite and the endothélium-derived relaxing factor is nitric oxide. Vasodilatation: vascular smooth muscle, peptides, autonomic nerves and endothélium. Edited by: Vanhoutte PM. 1988, New York: Raven Press, 401-414.

5. Lüscher TF: Endothelial vasoactive substances and cardiovascular disease. 1988, Basel: S Karger, 1-130.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3